Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 2249, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31113959

ABSTRACT

The origin of the North American Cordillera and its affinity with the bounding craton are subjects of contentious debate. The mechanisms of orogenesis are rooted in two competing hypotheses known as the accretionary and collisional models. The former model attributes the Cordillera to an archetypal accretionary orogen comprising a collage of exotic terranes. The latter, less popular view argues that the Cordillera is a collisional product between an allochthonous ribbon microcontinent and cratonic North America. Here we present new seismic evidence of a sharp and structurally complex Cordillera-craton boundary in the uppermost mantle beneath the southern Canadian Cordillera, which can be interpreted as either a reshaped craton margin or a Late Cretaceous collisional boundary based on the respective hypotheses. This boundary dips steeply westward underneath a proposed (cryptic) suture in the foreland, consisent with the predicted location and geometry of the mantle suture, thus favoring a collisional origin.

2.
Sci Rep ; 5: 8613, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25721905

ABSTRACT

The Earth's core is mostly an Fe-Ni alloy with a fraction of light elements (~10 wt%, mainly O, S and Si). Accumulation of these light elements under the core-mantle boundary (CMB) may lead to chemical stratification. Seismic observations have been presented both for and against the stratification in the topmost region of the outer core. Here we investigate the structure under the CMB using differential travel times between SKKS and S3KS waves. We obtain 606 high-quality S3KS-SKKS differential travel times with global path coverage. Result from a Bayesian inversion of these differential times indicates that the seismic velocity in the top 800 km of the outer core is ~0.07% on average lower than that in model PREM. The depth-dependent velocity profile, in particular a low-velocity zone of up to ~0.25% lower than PREM at ~80 km below the CMB, strongly favors the existence of stratification at the top of the outer core.

3.
Science ; 303(5656): 338-43, 2004 Jan 16.
Article in English | MEDLINE | ID: mdl-14657505

ABSTRACT

We present tomographic evidence for the existence of deep-mantle thermal convection plumes. P-wave velocity images show at least six well-resolved plumes that extend into the lowermost mantle: Ascension, Azores, Canary, Easter, Samoa, and Tahiti. Other less well-resolved plumes, including Hawaii, may also reach the lowermost mantle. We also see several plumes that are mostly confined to the upper mantle, suggesting that convection may be partially separated into two depth regimes. All of the observed plumes have diameters of several hundred kilometers, indicating that plumes convey a substantial fraction of the internal heat escaping from Earth.

SELECTION OF CITATIONS
SEARCH DETAIL
...