Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(15)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35956724

ABSTRACT

Guided bone regeneration surgery is an important dental operation used to regenerate enough bone to successfully heal dental implants. When this technique is performed on maxilla sinuses, hyaluronic acid (HLA) can be used as an auxiliary material to improve the graft material handling properties. Recent studies have indicated that low-molecular hyaluronic acid (L-HLA) provides a better regeneration ability than high-molecular-weight (H-HLA) analogues. The aim of this study was to fabricate an L-HLA-carboxymethyl cellulose (CMC) hybrid to promote bone regeneration while maintaining viscosity. The proliferation effect of fabricated L-HLA was tested using dental pulp stem cells (DPSCs). The mitogen-activated protein kinase (MAPK) pathway was examined using cells cultured with L-HLA combined with extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 inhibitors. The bone growth promotion of fabricated L-HLA/CMC hybrids was tested using an animal model. Micro-computer tomography (Micro-CT) and histological images were evaluated quantitatively to compare the differences in the osteogenesis between the H-HLA and L-HLA. Our results show that the fabricated L-HLA can bind to CD44 on the DPSC cell membranes and affect MAPK pathways, resulting in a prompt proliferation rate increase. Micro CT images show that new bone formation in rabbit calvaria defects treated with L-HLA/CMC was almost two times higher than in defects filled with H-HLA/CMC (p < 0.05) at 4 weeks, a trend that remained at 8 weeks and was confirmed by HE-stained images. According to these findings, it is reasonable to conclude that L-HLA provides better bone healing than H-HLA, and that the L-HLA/CMC fabricated in this study is a potential candidate for improving bone healing efficiency when a guided bone regeneration surgery was performed.

2.
Animals (Basel) ; 12(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35454213

ABSTRACT

Numerous cases and a shortage of resources usually limit wild animal rescue. New technology might save these severely injured wild animals from euthanasia by easing the requirement of intensive medication. Three-dimensional (3D) technologies provide precise and accurate results that improve the quality of medical applications. These 3D tools have become relatively low-cost and accessible in recent years. In the medical field of exotic animals, turtle shell defects are highly challenging because of inevitable water immersion. This report is the first attempt to apply the combination of 3D scanning, computer-aided design (CAD), and 3D printing to make a device that protects the wound from exposure to water or infection sources. The presented techniques successfully extricate a wild freshwater turtle from an extensive shell defect within a short period. Integration of multiple sciences to 3D technology can provide a facile model for veterinary medical applications.

3.
J Dent Sci ; 17(1): 354-360, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35028058

ABSTRACT

BACKGROUND/PURPOSE: Immediate placement in the esthetic zone has been a predictable treatment option. However, it requires the clinician to be experienced and knowledgeable about esthetic diagnosis, accurate 3-dimensional (3D) implant placement, and restoratively driven planning/placement. Therefore, this study aimed to investigate a novel workflow integrating dynamic navigation to immediate single-implant placement in the aesthetic zone. MATERIALS AND METHODS: We included ten patients who required at least one implant in the esthetic area and were treated with post-extraction socket implant placement. Osteotomy and implant placement followed computer-assisted implant positioning and image-guided dynamic navigation. Treatment outcomes were implant success rates, surgical and prosthetic complications, marginal bone level (MBL), modified pink esthetic score, and white score. RESULTS: In the consecutive clinical cases, patients were satisfied with implant therapy's function and esthetic outcome in the esthetic zone. No other surgical or biological complications occurred, which accounts for the 100% cumulative success rate. The mean MBL was -0.76 ± 0.15 mm assessed using standardized intraoral digital periapical radiographs. CONCLUSION: The novel application of a dynamic guided navigation system is a dependable clinical protocol to obtain optimal implant position/angulation and esthetics on immediate implant placement.

4.
J Periodontol ; 93(3): 449-457, 2022 03.
Article in English | MEDLINE | ID: mdl-33999413

ABSTRACT

BACKGROUND: Intercellular cross-talking was suggested in matrix metalloproteinase (MMP)-9 expression with unknown mechanisms. Studies showed cyclophilin A (CypA) playing an important role in regulating MMP-9 expression in varied diseases. The aim of the study was to examine the CyPA on the MMP-9 augmentation in monocytic U937 cells after Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS) treatment and human gingival fibroblast (hGF) co-culture. METHODS: In independent culture or co-culture of hGF and U937 cell, quantitative real-time polymerase chain reaction (qPCR) and zymography were selected to examine the mRNA and protein activity of MMP-9, respectively. The CyPA expression was determined by qPCR. RESULTS: LPS could enhance MMP-9 mRNA expression and enzyme activity in U937 cell. However, the enhancements were not observed in hGF. Similarly, LPS enhanced CyPA mRNA in U937, but not in hGF. After co-cultured with hGF, however, MMP-9 and CyPA in U937 increased regardless of the presence/absence of LPS. In U937 cells, the extra-supplied CyPA increased MMP-9 mRNA and enzyme activity, whereas the CyPA inhibitor, cyclosporine A, suppressed the LPS- and co-culture-enhanced MMP-9. Moreover, the inhibitors for MAP kinase, including PD98059 (ERK) and SP600125 (JNK), suppressed the CyPA-enhanced MMP-9 in U937. CONCLUSION: Through the CyPA pathway, the LPS and the hGF could augment the MMP-9 expression in the U937 cells.


Subject(s)
Matrix Metalloproteinase 9 , Porphyromonas gingivalis , Cyclophilin A/metabolism , Cyclophilin A/pharmacology , Fibroblasts/metabolism , Gingiva , Humans , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Porphyromonas gingivalis/metabolism , RNA, Messenger/metabolism , U937 Cells
5.
Cancers (Basel) ; 13(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209279

ABSTRACT

BACKGROUND: This study used NeuN transgenic (NTTg) mice with spontaneous breast tumor development to evaluate the dynamic changes of circulating tumor cells (CTCs) prior to and during tumor development. METHODS: In this longitudinal, clinically uninterrupted study, we collected 75 µL of peripheral blood at the age of 8, 12, 16, and 20 weeks in the first group of five mice, and at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability in the second group of four mice. Diluted blood samples were run through a modified mouse-CMx chip to isolate the CTCs. RESULTS: The CTC counts of the first group of mice were low (1 ± 1.6) initially. The average CTC counts were 16 ± 9.5, 29.0 ± 18.2, and 70.0 ± 30.3 cells per 75 µL blood at the age of 32 weeks, the time of tumor palpability, and one week after tumor palpability, respectively. There was a significant positive correlation between an increase in CTC levels and tumor vascular density (p-value < 0.01). This correlation was stronger than that between CTC levels and tumor size (p-value = 0.076). The captured CTCs were implanted into a non-tumor-bearing NTTg mouse for xenografting, confirming their viability and tumorigenesis. CONCLUSION: Serial CTCs during an early stage of tumor progression were quantified and found to be positively correlated with the later tumor vascular density and size. Furthermore, the successful generation of CTC-derived xenografts indicates the tumorigenicity of this early onset CTC population.

6.
J Periodontal Res ; 55(5): 705-712, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32406527

ABSTRACT

OBJECTIVE: This in vitro study aimed to evaluate the expression of cyclophilin A (CyPA) in U937 monocytic cells after coculturing with the human gingival fibroblasts (HGFs) and the effect of CyPA on the augmentation of MMP-2 expression in the coculture environment. BACKGROUND: Leukocyte infiltration in gingival connective tissue is one of the major findings in the lesions of inflammatory periodontal diseases. A crosstalk between the resident gingival fibroblasts and the recruited inflammatory cells that promote the expression of matrix metalloproteinases (MMPs) was proposed based on recent findings, whereas the cluster of differentiation 147 (CD147)-CyPA pathway was suggested to be involved with the crosstalk. MATERIAL AND METHODS: CyPA was released into media, in the independent or transwell coculture of HGF and U937 cells, as determined by enzyme-linked immunosorbent assay, whereas intracellular mRNA expressions for CyPA and MMP-2 were examined by quantitative real-time polymerase chain reaction, in the transwell coculture or conditional medium models. Zymography was conducted to analyze the activities of pro-MMP-2/MMP-2 released into the media. RESULTS: (a) A significantly increased CyPA protein level was observed in the transwell coculture media compared with that in the independent culture. (b) The transwell coculture-enhanced mRNA expression for CyPA was noticed in U937 cells but not in HGFs. After adding with HGF-conditioned medium, the mRNA enhancement in U937 cells occurred in a dose-dependent manner. (c) Although the MMP-2 activities significantly increased after transwell coculturing, the MMP-2 mRNA enhancement was observed only in HGFs. (d) Exogenous CyPA could enhance MMP-2 activities in HGFs in a dose-dependent manner. However, the CyPA antagonist reduced the MMP-2 activities in the transwell cocultures. (e) Moreover, the CyPA-enhanced MMP-2 activity in HGF was decreased significantly by the pathway inhibitor for c-Jun amino-terminal kinase (JNK). CONCLUSION: Based on the present findings, we suggest that gingival fibroblasts could enhance the CyPA release from U937 cells, via the JNK pathway, resulting in MMP-2 enhancement in fibroblasts. The finding shed light on a new mechanism of cellular interaction involving MMP-2 and CyPA, in two cells.


Subject(s)
Cyclophilin A , Gingiva , Matrix Metalloproteinase 2 , Cells, Cultured , Cyclophilin A/physiology , Fibroblasts/metabolism , Gingiva/metabolism , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , U937 Cells
7.
J Periodontol ; 88(7): e120-e128, 2017 07.
Article in English | MEDLINE | ID: mdl-28387609

ABSTRACT

BACKGROUND: This study aims to evaluate the ameliorative effect of carvacrol, an anti-inflammatory monoterpenoid phenol and a major component of Plectranthus amboinicus, on periodontal damage in an experimental rat model of periodontitis. METHODS: Forty Sprague-Dawley rats were divided into ligation (Lig), non-ligation (n-Lig), and two ligation plus carvacrol (Lig+C) groups. Carvacrol (17.5 or 35.0 mg/kg body weight/day) was administered intragastrically from 1 day before ligation. On day 8, dental alveolar bone loss and gingival inflammation in periodontal specimens were examined by dental radiography, microcomputed tomography, and histology. Expressions of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, and inducible nitric oxide synthase messenger (m)RNAs, and levels of matrix metalloproteinase (MMP)-2 and MMP-9 in gingiva were examined by reverse transcription-polymerase chain reaction and zymography. RESULTS: Dental radiography revealed periodontal bone-supporting ratios in Lig and Lig+C groups were lower than the n-Lig group, with Lig group ratios being lowest. Compared with the n-Lig group, the cemento-enamel junction-bone distance was significantly longer in Lig and Lig+C groups, with Lig+C groups showing shorter distances regardless of radiographic methods used. Histology and histometry showed less inflammatory area and stronger connective tissue attachment in Lig+C groups than in the Lig group. Cytokine/mediator mRNA expression and MMP-9 levels were reduced in the Lig+C groups. CONCLUSIONS: Carvacrol reduced tissue damage and bone loss caused by ligation-induced periodontitis. The present results indicate that carvacrol might reduce tissue destruction by downregulating expression of proinflammatory mediators and MMP-9.


Subject(s)
Alveolar Bone Loss/prevention & control , Anti-Inflammatory Agents/therapeutic use , Matrix Metalloproteinase 9/metabolism , Monoterpenes/therapeutic use , Periodontitis/drug therapy , Alveolar Bone Loss/diagnostic imaging , Animals , Anti-Inflammatory Agents/pharmacology , Cymenes , Disease Models, Animal , Down-Regulation , Gingivitis/drug therapy , Gingivitis/metabolism , Ligation , Male , Matrix Metalloproteinase 2/metabolism , Monoterpenes/pharmacology , Periodontitis/diagnostic imaging , Periodontitis/metabolism , RNA/metabolism , Radiography, Dental , Rats , Rats, Sprague-Dawley
8.
Sci Rep ; 6: 24517, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27075165

ABSTRACT

Enumeration of circulating tumor cells (CTCs) has been proven as a prognostic marker for metastatic colorectal cancer (m-CRC) patients. However, the currently available techniques for capturing and enumerating CTCs lack of required sensitivity to be applicable as a prognostic marker for non-metastatic patients as CTCs are even more rare. We have developed a microfluidic device utilizing antibody-conjugated non-fouling coating to eliminate nonspecific binding and to promote the multivalent binding of target cells. We then established the correlation of CTC counts and neoplasm progression through applying this platform to capture and enumerate CTCs in 2 mL of peripheral blood from healthy (n = 27), benign (n = 21), non-metastatic (n = 95), and m-CRC (n = 15) patients. The results showed that the CTC counts progressed from 0, 1, 5, to 36. Importantly, after 2-year follow-up on the non-metastatic CRC patients, we found that those who had ≥5 CTCs were 8 times more likely to develop distant metastasis within one year after curable surgery than those who had <5. In conclusion, by employing a sensitive device, CTC counts show good correlation with colorectal neoplasm, thus CTC may be as a simple, independent prognostic marker for the non-metastatic CRC patients who are at high risk of early recurrence.


Subject(s)
Cell Count/instrumentation , Cell Count/methods , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/pathology , Neoplasm Metastasis/diagnosis , Neoplastic Cells, Circulating , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Microfluidics/instrumentation , Microfluidics/methods , Middle Aged , Prognosis
9.
PLoS One ; 11(3): e0149633, 2016.
Article in English | MEDLINE | ID: mdl-26938471

ABSTRACT

Here we presented a simple and effective membrane mimetic microfluidic device with antibody conjugated supported lipid bilayer (SLB) "smart coating" to capture viable circulating tumor cells (CTCs) and circulating tumor microemboli (CTM) directly from whole blood of all stage clinical cancer patients. The non-covalently bound SLB was able to promote dynamic clustering of lipid-tethered antibodies to CTC antigens and minimized non-specific blood cells retention through its non-fouling nature. A gentle flow further flushed away loosely-bound blood cells to achieve high purity of CTCs, and a stream of air foam injected disintegrate the SLB assemblies to release intact and viable CTCs from the chip. Human blood spiked cancer cell line test showed the ~95% overall efficiency to recover both CTCs and CTMs. Live/dead assay showed that at least 86% of recovered cells maintain viability. By using 2 mL of peripheral blood, the CTCs and CTMs counts of 63 healthy and colorectal cancer donors were positively correlated with the cancer progression. In summary, a simple and effective strategy utilizing biomimetic principle was developed to retrieve viable CTCs for enumeration, molecular analysis, as well as ex vivo culture over weeks. Due to the high sensitivity and specificity, it is the first time to show the high detection rates and quantity of CTCs in non-metastatic cancer patients. This work offers the values in both early cancer detection and prognosis of CTC and provides an accurate non-invasive strategy for routine clinical investigation on CTCs.


Subject(s)
Antigens, Neoplasm/blood , Colorectal Neoplasms/blood , Lab-On-A-Chip Devices , Neoplastic Cells, Circulating/immunology , Adult , Antibodies/immunology , Antigens, Neoplasm/immunology , Antigens, Neoplasm/isolation & purification , Colorectal Neoplasms/immunology , Early Detection of Cancer , Female , HCT116 Cells , Humans , Lipids/chemistry , Male , Middle Aged , Neoplastic Cells, Circulating/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...