Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(24): eado4786, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875328

ABSTRACT

By taking advantage of the effects of solvent selectivity and topology on high-χ block copolymer (BCP) for self-assembly, network phases with high packing frustration can be formed in self-assembled polystyrene-b-polydimethylsiloxane (PS-b-PDMS). Apart from gyroid with trigonal structure and diamond with tetrahedral structure, a peculiar network phase with space group of [Formula: see text] (Frank-Kasper structure) can be found in six-arm star-block PS-b-PDMS as evidenced by small-angle x-ray scattering. Electron tomography results reveal the network phase with alternating connection of three and four struts. The observed phase behaviors suggest that the network formation is built from the bisectors of dispersive spheres in the Frank-Kasper phase, instead of building connections among them, and thus decipher the origins of complex phase formation due to the adaptive character of malleable mesoatoms.

2.
Small ; 20(14): e2307487, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37985946

ABSTRACT

By utilizing bicontinuous and nanoporous ordered nanonetworks, such as double gyroid (DG) and double diamond (DD), metamaterials with exceptional optical and mechanical properties can be fabricated through the templating synthesis of functional materials. However, the volume fraction range of DG in block copolymers is significantly narrow, making it unable to vary its porosity and surface-to-volume ratio. Here, the theoretically limited structural volume of the DG phase in coil-coil copolymers is overcome by enlarging the conformational asymmetry through the association of mesogens, providing fast access to achieving flexible structured materials of ultra-high porosities. The new materials design, dual-extractable nanocomposite, is created by incorporating a photodegradable block with a solvent-extractable mesogen (m) into an accepting block, resulting in a new hollow gyroid (HG) with the largely increased surface-to-volume ratio and porosity of 77 vol%. The lightweight HG exhibits a low refractive index of 1.11 and a very high specific reduced modulus, almost two times that of the typical negative gyroid (porosity≈53%) and three times that of the positive gyroid (porosity≈24%). This novel concept can significantly extend the DG phase window of block copolymers and the corresponding surface-to-volume ratio, being applicable for nanotemplate-synthesized nanomaterials with a great gain of mechanical, catalytic, and optoelectronic properties.

3.
Nanoscale Res Lett ; 17(1): 18, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35072827

ABSTRACT

DNA-templated metallization is broadly investigated in the fabrication of metallic structures by virtue of the unique DNA-metal ion interaction. However, current DNA-templated synthesis is primarily carried out based on pure DNA in an aqueous solution. In this study, we present in situ synthesis of metallic structures in a natural DNA complex bulk film by UV light irradiation, where the growth of silver particles is resolved by in situ time-resolved small-angle X-ray scattering and dielectric spectroscopy. Our studies provide physical insights into the kinetics and mechanisms of natural DNA metallization, in correlation with the multi-stage switching operations in the bulk phase, paving the way towards the development of versatile biomaterial composites with tunable physical properties for optical storage, plasmonics, and catalytic applications.

4.
Proc Natl Acad Sci U S A ; 118(11)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33688050

ABSTRACT

A series of cubic network phases was obtained from the self-assembly of a single-composition lamellae (L)-forming block copolymer (BCP) polystyrene-block-polydimethylsiloxane (PS-b-PDMS) through solution casting using a PS-selective solvent. An unusual network phase in diblock copolymers, double-primitive phase (DP) with space group of [Formula: see text], can be observed. With the reduction of solvent evaporation rate for solution casting, a double-diamond phase (DD) with space group of [Formula: see text] can be formed. By taking advantage of thermal annealing, order-order transitions from the DP and DD phases to a double-gyroid phase (DG) with space group of [Formula: see text] can be identified. The order-order transitions from DP (hexapod network) to DD (tetrapod network), and finally to DG (trigonal planar network) are attributed to the reduction of the degree of packing frustration within the junction (node), different from the predicted Bonnet transformation from DD to DG, and finally to DP based on enthalpic consideration only. This discovery suggests a new methodology to acquire various network phases from a simple diblock system by kinetically controlling self-assembling process.

5.
Sci Adv ; 6(42)2020 Oct.
Article in English | MEDLINE | ID: mdl-33055164

ABSTRACT

Nanonetwork-structured materials can be found in nature and synthetic materials. A double gyroid (DG) with a pair of chiral networks but opposite chirality can be formed from the self-assembly of diblock copolymers. For triblock terpolymers, an alternating gyroid (GA) with two chiral networks from distinct end blocks can be formed; however, the network chirality could be positive or negative arbitrarily, giving an achiral phase. Here, by taking advantage of chirality transfer at different length scales, GA with controlled chirality can be achieved through the self-assembly of a chiral triblock terpolymer. With the homochiral evolution from monomer to multichain domain morphology through self-assembly, the triblock terpolymer composed of a chiral end block with a single-handed helical polymer chain gives the chiral network from the chiral end block having a particular handed network. Our real-space analyses reveal the preferred chiral sense of the network in the GA, leading to a chiral phase.

6.
Opt Express ; 25(15): 17627-17638, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28789255

ABSTRACT

In this study, we present a comprehensive analysis to examine the origin of circular polarization stop bands in a dielectric helix structure. We show that band gaps in a helix structure may result from Bragg resonance or non-Bragg mechanism. The two types of gaps exhibit distinct optical properties and display an opposite dependence with respect to structural periodicity. The interplay of gaps not only gives rise to various operation scenarios, but results in pronounced modifications to dispersion characteristics that lead to abnormal propagation properties of circularly polarized waves. Our findings reveal versatile behaviors of circularly polarized light interacted with a three-dimensional helix medium, which can be of great importance for the design and implementation of circular polarization-dependent devices and applications.

7.
Opt Express ; 23(19): 24416-25, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26406646

ABSTRACT

Chiral structures exhibit strong interactions with circularly polarized light, and have been demonstrated to show many polarization-dependent properties. Various chiral structures exhibit some level of circular dichroism, where right-handed and left-handed circularly polarized waves experience different transmission. In this study, we use a dielectric helix array as a model system to examine the interactions of circularly polarized light with helical structures. Our results show that circular polarization band gaps can be formed in a dielectric helix array not only by light having the same handedness with the structure but also by light with the opposite handedness, resulting from additional chiral motifs induced by the arrangement of helices. Dual polarization band gaps can thus be tailored by varying the geometrical parameters, and circular-polarization dependent properties can be manipulated for optoelectronic devices and applications.

8.
Opt Express ; 23(13): 16772-81, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26191689

ABSTRACT

We present a helix photonic metamaterial that exhibits nondispersive optical rotation in a broad passband at optical frequencies. Several features, including zero dispersion, zero ellipticity, and high transmission, can be simultaneously achieved in the presented structure. Pure optical rotation with extremely low dispersion is exhibited in a broad band covering the optical telecommunication wavelengths along with high transmission above 95%. We show that the chiral responses as well as the wavelength-dependent properties of the passband are governed by the behaviors of adjacent resonances. A systematic study of the optical properties with various geometrical parameters is performed, where the dependence of passband properties on resonance behaviors is examined and discussed. Such broadband dispersion-free optical rotation at optical frequencies may be of great interest for high-performance polarization manipulation and relevant applications.

9.
Methods ; 67(2): 105-15, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24631889

ABSTRACT

The role of DNA as structuring or templating agent has become more significant with the development of nanobiotechnology. Although short single and double stranded DNA have extensively been used as immobilization tool, as a template for nanoparticle preparation and in design of various devices such as nanomotors and biosensors, DNA from natural sources has an advantage of being abundant, cheap and readily available. Therefore, it is not surprising that there is a huge interest in making the use of natural DNA properties for both nano- and micro-applications. In this review we attempt to give an overview of the up to date applications of natural DNA, either from viral, marine or mammalian sources, in design of functional devices. This article is meant to be a starting point and a guide to the platforms in which natural DNA is employed such as DNA origami, optoelectronic devices and organic catalysis.


Subject(s)
DNA, Catalytic/chemistry , Nanoparticles/chemistry , Alkylation , Animals , Catalysis , Cycloaddition Reaction , DNA/chemistry , DNA/ultrastructure , Humans , Nanoparticles/ultrastructure , Nucleic Acid Amplification Techniques , Nucleic Acid Conformation , Optics and Photonics
10.
Adv Mater ; 26(20): 3225-9, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24677175

ABSTRACT

A simple method for the preparation of nanomaterials with new functionality by physical displacement of a network phase is suggested, giving a change in space group symmetry and hence properties. A double gyroid structure made by the self-assembly of block copolymers is used as a model system for the demonstration of shifting networks to achieve single gyroid-like scattering properties. Free-standing single gyroid-like network materials can be fabricated to give nanophotonic properties, similar to the photonic properties of a butterfly wing structure.

11.
Adv Mater ; 25(12): 1780-6, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23359456

ABSTRACT

Well-defined multibranched gold (Au) in polymers, both as bulk or continuous thin films, can be fabricated by using a nanoporous polymer with gyroid nanochannels as a template. The nanoporous polymer template is obtained from the self-assembly of a degradable block copolymer, polystyrene-b-poly (L-lactide) (PS-PLLA), followed by the hydrolysis of PLLA blocks. Templated seeding growth approach can be conducted to create precisely controlled nanostructured Au giving remarkable surface plasmon resonance (SPR) in (branched Au with uniform distribution in PS matrix) near-infrared (NIR) region. Controlled growth conditions allow the fabrication of three-dimensionally ordered nanoporous Au particles that possess NIR SPR. Double gyroid Au with dual networks in the PS matrix is obtained after completing the seeding growth at which the NIR SPR diminishes resulting from the reduction in the density of nanostructured edge.


Subject(s)
Gold/chemistry , Infrared Rays , Nanotechnology/methods , Surface Plasmon Resonance , Metal Nanoparticles/chemistry , Models, Molecular , Molecular Conformation , Porosity
12.
Nanoscale ; 4(18): 5585-7, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22868348

ABSTRACT

A method for the preparation of complex anisotropic gold structures with potential uses in catalysis and photonics is presented based on the use of salmon sperm DNA and a photosensitizer to enable light triggered gold salt reduction.


Subject(s)
DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Photosensitizing Agents/chemistry , Surface-Active Agents/chemistry , Animals , Crystallization , Light , Luminescent Measurements , Male , Oxidation-Reduction , Salmon , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...