Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37333068

ABSTRACT

Chemical screening studies have identified drug sensitivities across hundreds of cancer cell lines but most putative therapeutics fail to translate. Discovery and development of drug candidates in models that more accurately reflect nutrient availability in human biofluids may help in addressing this major challenge. Here we performed high-throughput screens in conventional versus Human Plasma-Like Medium (HPLM). Sets of conditional anticancer compounds span phases of clinical development and include non-oncology drugs. Among these, we characterize a unique dual-mechanism of action for brivudine, an agent otherwise approved for antiviral treatment. Using an integrative approach, we find that brivudine affects two independent targets in folate metabolism. We also traced conditional phenotypes for several drugs to the availability of nucleotide salvage pathway substrates and verified others for compounds that seemingly elicit off-target anticancer effects. Our findings establish generalizable strategies for exploiting conditional lethality in HPLM to reveal therapeutic candidates and mechanisms of action.

2.
Protein J ; 39(5): 542-553, 2020 10.
Article in English | MEDLINE | ID: mdl-32681406

ABSTRACT

Enzymes play important roles in many biological processes. Amino acid residues in the active site pocket of an enzyme, which are in direct contact with the substrate(s), are generally believed to be critical for substrate recognition and catalysis. Identifying and understanding how these "catalytic" residues help enzymes achieve enormous rate enhancement has been the focus of many structural and biochemical studies over the past several decades. Recent studies have shown that enzymes are intrinsically dynamic and dynamic coupling between distant structural elements is essential for effective catalysis in modular enzymes. Therefore, distal residues are expected to have impact on enzyme function. However, few studies have investigated the role of distal residues on enzymatic catalysis. In the present study, the effects of distal residue mutations on the catalytic function of an aminoacyl-tRNA synthetase, namely, prolyl-tRNA synthase, were investigated. The present study demonstrates that distal residues significantly contribute to catalysis of the modular Escherichia coli prolyl-tRNA synthetase by maintaining intrinsic protein flexibility.


Subject(s)
Amino Acyl-tRNA Synthetases/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Catalysis , Catalytic Domain , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...