Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 52(12): 6965-6973, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29697249

ABSTRACT

Food is an important source of human exposure to hazardous chemicals. Chemical concentration in a food item depends on local environmental contamination, production conditions, and, for animal-derived foods, on feed. Here, we investigate these influences on the accumulation of individual polybrominated diphenyl ether congeners (PBDEs) in farmed Atlantic salmon ( Salmo salar). We develop a dynamic model over a full sea-cage salmon production cycle. To assess the influence of metabolic debromination on PBDE congener profiles, in vitro measurements of debromination rates in fish liver cells were extrapolated to whole-body metabolic rate constants. Model results indicate that the dominant factors governing PBDE concentration in Atlantic salmon fillet are uptake via contaminated feed and fish growth, whereas the influence of metabolic debromination is minor. PBDE concentrations in fish feed depend on several factors, including the geographic origin of fish feed ingredients, which are produced and traded globally. Human exposure to PBDE via salmon consumption is less influenced by environmental concentrations at the location of salmon farming than by environmental concentrations influencing feed components. This dependence of PBDE concentrations in salmon on the origin and composition of feed reveals the complexity of predicting contaminant concentrations in globally traded food.


Subject(s)
Salmo salar , Water Pollutants, Chemical , Animal Feed , Animals , Halogenated Diphenyl Ethers , Seafood
2.
Sci Total Environ ; 613-614: 1250-1262, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28962073

ABSTRACT

Conventional banana cultivation in Costa Rica relies on heavy pesticide use. While pesticide residues in exported bananas do not generally represent a safety concern for consumers abroad, ecosystem and human health in producing regions are not likewise protected. In Costa Rica, most studies on pesticide residues in the environment are snapshots, limiting our ability to identify temporal dynamics that can inform risk mitigation strategies. To help bridge this gap, we created a dynamic multimedia model for the Caño Azul River drainage area, which is heavily influenced by banana and pineapple plantations. This model estimates chemical concentrations in water, air, soil, sediments, and banana plants through time, based on pesticide properties and emission patterns and on variable environmental conditions. Case studies for three representative chemicals-the herbicide diuron, the nematicide ethoprofos, and the fungicide epoxiconazole-show that concentrations in fruit remain below EU and US maximum residue limits set to ensure consumer health, while those in the environment are highly variable, reaching peak concentrations in water that can exceed thresholds for ecosystem health. Critical research needs, including incorporating sediment dynamics and the effects of adjuvants on the properties and transport of active ingredients into multimedia models, were identified.


Subject(s)
Environmental Pollutants/analysis , Musa , Pesticide Residues/analysis , Costa Rica , Ecosystem , Humans
3.
Eur J Pharm Sci ; 104: 162-170, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28315466

ABSTRACT

In sterile drug product manufacturing, scratched and broken glass containers (i.e., vials) cause product losses, glass particles, equipment contamination and additional cleaning efforts. However, mechanical resistance and exposure of vials to mechanical stress are not sufficiently understood, and no systematic approach for reducing glass-related losses is established. Manufacturers may tackle glass-related losses more rationally if (i) frequencies for inflicting disqualifying damages to drug product containers are known for given forces, (ii) actual exposure in industrial filling lines is quantified and (iii) process enhancements are derived based on collected information. In this work, an innovative approach for exploiting these opportunities, identifying glass defect root causes and reducing glass defects is provided. Devices for quantifying (i) damaging frequencies and (ii) actual exposure are presented and then applied in an industrial case study on sterile drug product manufacturing; finally, (iii) process enhancements are derived and implemented. In the case study, frequencies for scratching vials at given forces as well as breaking forces have been determined. Peak exposure in the investigated filling line was detected at 6 N. As a result of the case study, key machine parts were identified and adjusted.


Subject(s)
Drug Industry , Glass , Quality Control
4.
Environ Sci Pollut Res Int ; 23(11): 10317-10334, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26503006

ABSTRACT

Significant knowledge gaps exist regarding the fate and transport of persistent organic pollutants like dichlorodiphenyltrichloroethane (DDT) in tropical environments. In Brazil, indoor residual spraying with DDT to combat malaria and leishmaniasis began in the 1950s and was banned in 1998. Nonetheless, high concentrations of DDT and its metabolites were recently detected in human breast milk in the community of Lake Puruzinho in the Brazilian Amazon. In this work, we couple analysis of soils and sediments from 2005 to 2014 at Puruzinho with a novel dynamic floodplain model to investigate the movement and distribution of DDT and its transformation products (dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)) and implications for human exposure. The model results are in good agreement with the accumulation pattern observed in the measurements, in which DDT, DDE, and DDD (collectively, DDX) accumulate primarily in upland soils and sediments. However, a significant increase was observed in DDX concentrations in soil samples from 2005 to 2014, coupled with a decrease of DDT/DDE ratios, which do not agree with model results assuming a post-ban regime. These observations strongly suggest recent use. We used the model to investigate possible re-emissions after the ban through two scenarios: one assuming DDT use for IRS and the other assuming use against termites and leishmaniasis. Median DDX concentrations and p,p'-DDT/p,p'-DDE ratios from both of these scenarios agreed with measurements in soils, suggesting that the soil parameterization in our model was appropriate. Measured DDX concentrations in sediments were between the two re-emission scenarios. Therefore, both soil and sediment comparisons suggest re-emissions indeed occurred between 2005 and 2014, but additional measurements would be needed to better understand the actual re-emission patterns. Monte Carlo analysis revealed model predictions for sediments were very sensitive to highly uncertain parameters associated with DDT degradation and partitioning. With this model as a tool for understanding inter-media cycling, additional research to refine these parameters would improve our understanding of DDX fate and transport in tropical sediments.


Subject(s)
DDT/chemistry , Models, Chemical , Soil Pollutants/chemistry , Brazil , DDT/analysis , Dichlorodiphenyl Dichloroethylene/analysis , Dichlorodiphenyl Dichloroethylene/chemistry , Dichlorodiphenyldichloroethane/analysis , Dichlorodiphenyldichloroethane/chemistry , Humans , Malaria , Rain , Soil/chemistry , Soil Pollutants/analysis , Tropical Climate
5.
J Nanobiotechnology ; 13: 93, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26694868

ABSTRACT

BACKGROUND: The use of gold nanoparticles (Au-NP) based medical applications is rising due to their unique physical and chemical properties. Diagnostic devices based on Au-NP are already available in the market or are in clinical trials and Au-NP based therapeutics and theranostics (combined diagnostic and treatment modality) are in the research and development phase. Currently, no information on Au-NP consumption, material flows to and concentrations in the environment are available. Therefore, we estimated prospective maximal consumption of Au-NP from medical applications in the UK and US. We then modelled the Au-NP flows post-use and predicted their environmental concentrations. Furthermore, we assessed the environment risks of Au-NP by comparing the predicted environmental concentrations (PECs) with ecological threshold (PNEC) values. RESULTS: The mean annual estimated consumption of Au-NP from medical applications is 540 kg for the UK and 2700 kg for the US. Among the modelled concentrations of Au-NP in environmental compartments, the mean annual PEC of Au-NP in sludge for both the UK and US was estimated at 124 and 145 µg kg(-1), respectively. The mean PEC in surface water was estimated at 468 and 4.7 pg L(-1), respectively for the UK and US. The NOEC value for the water compartment ranged from 0.12 up to 26,800 µg L(-1), with most values in the range of 1000 µg L(-1). CONCLUSION: The results using the current set of data indicate that the environmental risk from Au-NP used in nanomedicine in surface waters and from agricultural use of biosolids is minimal in the near future, especially because we have used a worst-case use assessment. More Au-NP toxicity studies are needed for the soil compartment.


Subject(s)
Environmental Pollutants/analysis , Fresh Water/chemistry , Gold/analysis , Metal Nanoparticles/analysis , Models, Statistical , Humans , Maximum Allowable Concentration , Risk Assessment , United Kingdom , United States
6.
Environ Sci Technol ; 49(20): 12306-14, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26393377

ABSTRACT

Methods to predict the bioaccumulation potential of per- and polyfluorinated alkyl substances (PFAS) are sorely needed, given the proliferation of these substances and lack of data on their properties and behavior. Here, we test whether molecular docking, a technique where interactions between proteins and ligands are simulated to predict both bound conformation and interaction affinity, can be used to predict PFAS binding strength and biological half-life. We show that an easy-to-implement docking program, Autodock Vina, can successfully redock perfluorooctanesulfonate (PFOS) to human serum albumin with deviations smaller than 2 Å. Furthermore, predicted binding strengths largely fall within one standard deviation of measured values for perfluorinated alkyl acids (PFAAs). Correlations with half-lives suggest both membrane partitioning and protein interactions are important, and that serum albumin is only one of a number of proteins controlling the fate of these chemicals in organisms. However, few data are available for validation of our approach as a broad screening tool, and available data are highly variable. We therefore call for collection of new data, particularly including proteins other than serum albumin and substances beyond perfluorooctanoic acid (PFOA) and PFOS. The methods we discuss in this work can serve as a framework for guiding such data collection.


Subject(s)
Alkanesulfonic Acids/chemistry , Caprylates/chemistry , Fluorocarbons/chemistry , Half-Life , Humans , Kinetics , Molecular Docking Simulation , Protein Binding , Regression Analysis , Serum Albumin/metabolism
7.
Environ Int ; 84: 55-63, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26222996

ABSTRACT

Consumer exposure to leave-on cosmetics and personal care products (C&PCPs) ingredients of low or moderate volatility is often assumed to occur primarily via dermal absorption. In reality they may volatilize from skin and represent a significant source for inhalation exposure. Often, evaporation rates of pure substances from inert surfaces are used as a surrogate for evaporation from more complex product matrices. Also the influence of partitioning to skin is neglected and the resulting inaccuracies are not known. In this paper we describe a novel approach for measuring chemical evaporation rates from C&PCPs under realistic consumer exposure conditions. Series of experiments were carried out in a custom-made ventilated chamber fitted with a vapor trap to study the disposition of a volatile cosmetic ingredient, decamethylcyclopentasiloxane (D5), after its topical application on either aluminum foil or porcine skin in vitro. Single doses were applied neat and in commercial deodorant and face cream formulations at normal room (23°C) and skin temperature (32°C). The condition-specific evaporation rates were determined as the chemical mass loss per unit surface area at different time intervals over 1-1.25h post-dose. Product weight loss was monitored gravimetrically and the residual D5 concentrations were analyzed with GC/FID. The release of D5 from exposed surfaces of aluminum occurred very fast with mean rates of 0.029 mg cm(-2)min(-1) and 0.060 mg cm(-2)min(-1) at 23°C and 32°C, respectively. Statistical analysis of experimental data confirmed a significant effect of cosmetic formulations on the evaporation of D5 with the largest effect (2-fold decrease of the evaporation rate) observed for the neat face cream pair at 32°C. The developed approach explicitly considers the initial penetration and evaporation of a substance from the Stratum Corneum and has the potential for application in dermal exposure modeling, product emission tests and the formulation of C&PCPs.


Subject(s)
Cosmetics/analysis , Inhalation Exposure/analysis , Models, Biological , Siloxanes/analysis , Administration, Cutaneous , Animals , Cosmetics/pharmacokinetics , Humans , In Vitro Techniques , Siloxanes/pharmacokinetics , Skin , Skin Absorption , Swine , Volatilization
8.
Part Fibre Toxicol ; 12: 18, 2015 Jun 27.
Article in English | MEDLINE | ID: mdl-26116549

ABSTRACT

BACKGROUND: The lung epithelial tissue barrier represents the main portal for entry of inhaled nanoparticles (NPs) into the systemic circulation. Thus great efforts are currently being made to determine adverse health effects associated with inhalation of NPs. However, to date very little is known about factors that determine the pulmonary translocation of NPs and their subsequent distribution to secondary organs. METHODS: A novel two-step approach to assess the biokinetics of inhaled NPs is presented. In a first step, alveolar epithelial cellular monolayers (CMLs) at the air-liquid interface (ALI) were exposed to aerosolized NPs to determine their translocation kinetics across the epithelial tissue barrier. Then, in a second step, the distribution to secondary organs was predicted with a physiologically based pharmacokinetic (PBPK) model. Monodisperse, spherical, well-characterized, negatively charged gold nanoparticles (AuNP) were used as model NPs. Furthermore, to obtain a comprehensive picture of the translocation kinetics in different species, human (A549) and mouse (MLE-12) alveolar epithelial CMLs were exposed to ionic gold and to various doses (i.e., 25, 50, 100, 150, 200 ng/cm(2)) and sizes (i.e., 2, 7, 18, 46, 80 nm) of AuNP, and incubated post-exposure for different time periods (i.e., 0, 2, 8, 24, 48, 72 h). RESULTS: The translocation kinetics of the AuNP across A549 and MLE-12 CMLs was similar. The translocated fraction was (1) inversely proportional to the particle size, and (2) independent of the applied dose (up to 100 ng/cm(2)). Furthermore, supplementing the A549 CML with two immune cells, i.e., macrophages and dendritic cells, did not significantly change the amount of translocated AuNP. Comparison of the measured translocation kinetics and modeled biodistribution with in vivo data from literature showed that the combination of in vitro and in silico methods can accurately predict the in vivo biokinetics of inhaled/instilled AuNP. CONCLUSION: Our approach to combine in vitro and in silico methods for assessing the pulmonary translocation and biodistribution of NPs has the potential to replace short-term animal studies which aim to assess the pulmonary absorption and biodistribution of NPs, and to serve as a screening tool to identify NPs of special concern.


Subject(s)
Computer Simulation , Epithelial Cells/metabolism , Gold Compounds/pharmacokinetics , Metal Nanoparticles , Models, Biological , Respiratory Mucosa/metabolism , Administration, Inhalation , Aerosols , Animals , Biological Transport , Cell Line, Tumor , Gold Compounds/administration & dosage , Gold Compounds/blood , Humans , Mice , Particle Size , Tissue Distribution
9.
Environ Int ; 79: 8-16, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25768720

ABSTRACT

Current practice of chemical risk assessment for consumer product ingredients still rarely exercises the aggregation of multi-source exposure. However, focusing on a single dominant source/pathway combination may lead to a significant underestimation of the risk for substances present in numerous consumer products, which often are used simultaneously. Moreover, in most cases complex multi-route exposure scenarios also need to be accounted for. This paper introduces and evaluates the performance of the Probabilistic Aggregate Consumer Exposure Model (PACEM) applied in the context of a tiered approach to exposure assessment for ingredients in cosmetics and personal care products (C&PCPs) using decamethylcyclopentasiloxane (D5) as a worked example. It is demonstrated that PACEM predicts a more realistic, but still conservative aggregate exposure within the Dutch adult population when compared to a deterministic point estimate obtained in a lower tier screening assessment. An overall validation of PACEM is performed by quantitatively relating and comparing its estimates to currently available human biomonitoring and environmental sampling data. Moderate (by maximum one order of magnitude) overestimation of exposure is observed due to a justified conservatism built into the model structure, resulting in the tool being suitable for risk assessment.


Subject(s)
Environmental Exposure/analysis , Environmental Monitoring/methods , Siloxanes/analysis , Adult , Aged , Cosmetics/chemistry , Environmental Exposure/adverse effects , Female , Household Products , Humans , Male , Middle Aged , Models, Statistical , Risk Assessment/methods , Young Adult
10.
Environ Int ; 75: 172-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25461427

ABSTRACT

Because of concerns over the impact of long-chain perfluoroalkyl acids (PFAAs) on humans and the environment, PFAAs and their precursors are being substituted by alternative substances including fluorinated alternatives that are structurally similar to the substances they replace. Using publicly accessible information, we aimed to identify the status quo of the hazard assessment of identified fluorinated alternatives, to analyze possible systemic shortcomings of the current industrial transition to alternative substances, and to outline possible solutions. Fluorinated alternatives, particularly short-chain PFAAs and perfluoroether carboxylic and sulfonic acids (PFECAs and PFESAs), possess high environmental stability and mobility implying that they have a high global contamination potential. In addition to their potential for causing global exposures, certain fluorinated alternatives have been identified as toxic and are thus likely to pose global risks to humans and the environment. Various factors, particularly the information asymmetry between industry and other stakeholders, have contributed to the current lack of knowledge about the risks posed by fluorinated alternatives. Available cases show that a non-fluorinated substitution strategy (employing either chemical or functionality substitutions) can be a possible long-term, sustainable solution and needs to be further developed and assessed.


Subject(s)
Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Animals , Carboxylic Acids/toxicity , Environment , Ethers/toxicity , Humans , Risk Assessment , Sulfonic Acids/toxicity
11.
Environ Int ; 74: 249-57, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25454242

ABSTRACT

Ultraviolet (UV) filters are substances designed to protect our skin from UV-induced damage and can be found in many categories of personal care products (PCPs). The potential endocrine-disrupting effects attributed to UV filter ethylhexyl methoxycinnamate (EHMC) are being debated. We evaluated the aggregate exposure of the Swiss-German population (N=1196; ages ≤1-97years) to EHMC via the use of PCPs; thus we provide the first comprehensive information about the current EHMC exposure sources and aggregate exposure levels. In our probabilistic modeling method performed at an individual level, PCP use data obtained by a postal questionnaire were linked to concentration data on EHMC gained from chemical analyses of PCPs used by the questionnaire respondents. The modeled median and 99.9th percentile of the internal aggregate exposure for the general population were 0.012 and 0.873mgday(-1)kg(-1) and 0.008 and 0.122mgday(-1)kg(-1) for the summer/autumn and winter/spring period, respectively. The major contributors to internal aggregate exposure were sunscreen products in summer/autumn (females: 64%; males: 85%; children aged ≤12years 93%). In winter/spring, lip care dominated for females (30%) and sunscreen for males (38%) and children aged ≤12years (50%). Overall, the internal aggregate exposure estimates for the studied population are shown to be below the Derived No Effect Level (DNEL) for EHMC i.e., the level of exposure above which humans should not be exposed; however, when an intense short-term exposure via sunscreen is accounted for during a sunbathing day, at the high-end percentiles (99.9th) the predicted aggregate exposure exceeds the DNEL for thyroid-disrupting effects such as for children aged ≤4years, who might be particularly susceptible to endocrine disrupting events. It is nevertheless critical to acknowledge that quantitative data on transdermal penetration of EHMC from PCPs are currently insufficient. Since long-term effects of endocrine disruptors are not known, future studies are warranted to provide accurate quantitative data on transdermal penetration of EHMC and to determine its metabolic fate in humans.


Subject(s)
Cinnamates/analysis , Endocrine Disruptors/analysis , Sunscreening Agents/analysis , Administration, Cutaneous , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cinnamates/administration & dosage , Cosmetics , Female , Humans , Infant , Male , Middle Aged , Models, Statistical , Risk Assessment , Seasons , Sunscreening Agents/administration & dosage , Young Adult
12.
Environ Sci Technol ; 39(7): 2406-13, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15871283

ABSTRACT

Environmental assessments in pesticide product development are generally restricted to plant uptake and emissions of active ingredients. Life-cycle assessment (LCA) enables a more comprehensive evaluation by additionally assessing the impacts of pesticide production and application (e.g. tractor operations). The use of LCA in the product development of pesticides, in addition to the methods commonly applied, is therefore advisable. In this paper a procedure for conducting LCA in early phases of product development is proposed. In a case study, two plant-growth regulators from different product generations were compared regarding their application in intensive production of winter wheat. The results showed thatthe reduced emissions from active ingredients of the newer pesticide were compensated by higher impacts from the production process. The authors draw the conclusion that it is important to consider environmental objectives in the procurement of precursors, in addition to the classical goals of increasing the efficacy and reducing the nontarget effects of pesticides. Moreover, the case study showed that decisions based on uncertain results in early stages of product development may need to be revised in later stages, e.g. based on investigations of pesticides' effects on crop yield.


Subject(s)
Environment , Pesticides/toxicity , Risk Assessment/economics , Risk Assessment/methods , Chlormequat/chemistry , Chlormequat/toxicity , Consumer Product Safety/standards , Cyclopropanes/chemistry , Cyclopropanes/toxicity , Decision Making , Quinones/chemistry , Quinones/toxicity , Triticum/drug effects , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...