Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Sci Total Environ ; 798: 149128, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34325139

ABSTRACT

Toxic plant secondary metabolites (PSMs), so-called phytotoxins, occur widely in plant species. Many of these phytotoxins have similar mobility, persistence, and toxicity properties in the environment as anthropogenic micropollutants, which increasingly contaminate surface waters. Although recent case studies have shown the aquatic relevance of phytotoxins, the overall exposure remains unknown. Therefore, we performed a detailed occurrence analysis covering 134 phytotoxins from 27 PSM classes. Water samples from seven small Swiss streams with catchment areas from 1.7 to 23 km2 and varying land uses were gathered over several months to investigate seasonal impacts. They were complemented with samples from different biogeographical regions to cover variations in vegetation. A broad SPE-LC-HRMS/MS method was applied with limits of detection below 5 ng/L for over 80% of the 134 included phytotoxins. In total, we confirmed 39 phytotoxins belonging to 13 PSM classes, which corresponds to almost 30% of all included phytotoxins. Several alkaloids were regularly detected in the low ng/L-range, with average detection frequencies of 21%. This is consistent with the previously estimated persistence and mobility properties that indicated a high contamination potential. Coumarins were previously predicted to be unstable, however, detection frequencies were around 89%, and maximal concentrations up to 90 ng/L were measured for fraxetin produced by various trees. Overall, rainy weather conditions at full vegetation led to the highest total phytotoxin concentrations, which might potentially be most critical for aquatic organisms.


Subject(s)
Alkaloids , Water Pollutants, Chemical , Chromatography, Liquid , Mass Spectrometry , Rivers , Water Pollutants, Chemical/analysis
2.
Environ Sci Technol ; 55(2): 1036-1044, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33372520

ABSTRACT

Pyrrolizidine alkaloids (PAs) are found to be toxic pollutants emitted into the environment by numerous plant species, resulting in contamination. In this article, we investigate the occurrence of PAs in the aquatic environment of small Swiss streams combining two different approaches. Pyrrolizidine alkaloids (PAs) are toxic secondary metabolites produced by numerous plant species. Although they were classified as persistent and mobile and found to be emitted into the environment, their occurrence in surface waters is largely unknown. Therefore, we performed a retrospective data analysis of two extensive HRMS campaigns each covering five small streams in Switzerland over the growing season. All sites were contaminated with up to 12 individual PAs and temporal detection frequencies between 36 and 87%. Individual PAs were in the low ng/L range, but rain-induced maximal total PA concentrations reached almost 100 ng/L in late spring and summer. Through PA patterns in water and plants, several species were tentatively identified as the source of contamination, with Senecio spp. and Echium vulgare being the most important. Additionally, two streams were monitored, and PAs were quantified with a newly developed, faster, and more sensitive LC-MS/MS method to distinguish different plant-based and indirect human PA sources. A distinctly different PA fingerprint in aqueous plant extracts pointed to invasive Senecio inaequidens as the main source of the surface water contamination at these sites. Results indicate that PA loads may increase if invasive species are sufficiently abundant.


Subject(s)
Pyrrolizidine Alkaloids , Chromatography, Liquid , Humans , Retrospective Studies , Switzerland , Tandem Mass Spectrometry
3.
Chimia (Aarau) ; 74(3): 129-135, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32197670

ABSTRACT

To protect themselves, plants can produce toxic secondary metabolites (phytotoxins) that appear with widely varying structures and negative effects. These phytotoxins often show similar properties as known aquatic micropollutants in terms of mobility, persistence, toxicity, and possibly also ecotoxicity. However, their occurrence in surface waters remains largely unknown, which is also due to unknown ability of available screening approaches to detect them. Therefore, we performed a target and suspect screening based on a persistence-mobility prioritization for phytotoxins in small Swiss creeks using high resolution mass spectrometry. In total, three of 26 targets were detected, three of 78 suspects tentatively identified, and six suspects fully confirmed by reference standards. To the best of our knowledge, it is the first time that three different plant secondary metabolite classes are detected in the same surface water sample. Estrogenic isoflavones were detected at 73% of the sites with formononetin as main toxin, which is in agreement with previous studies. Furthermore, pyrrolizidine alkaloids and the indole alkaloid gramine were detected. Especially pyrrolizidine alkaloids might be critical due to their production by various plants including the invasive Senecio inaequidens, and their known importance in food and feed safety. Based on these first screening results, different phytotoxin classes should be assessed for their ecotoxicological effects and considered in future water monitoring.


Subject(s)
Water/chemistry , Mass Spectrometry , Pyrrolizidine Alkaloids , Senecio , Toxins, Biological
4.
Environ Int ; 136: 105397, 2020 03.
Article in English | MEDLINE | ID: mdl-31884417

ABSTRACT

BACKGROUND: Bisphenol A (BPA) and, with increasing occurrence, its analogs bisphenol S (BPS) and bisphenol F (BPF) are applied in many consumer products, leading to humans being exposed from a vast number of sources and via several routes. Estrogenic and anti-androgenic effects are exerted by the chemical BPA, and also by its analogs. Therefore, realistic exposure assessments are needed for assessing risks related to cumulative exposure. OBJECTIVES: Biomonitoring for BPA, BPS, and BPF was conducted in a human study embedded in the EU project EuroMix and the measured urinary concentrations were compared to source-to-dose calculations for source allocation and plausibility test of the model. METHODS: For two 24-hour study periods separated by 2-3 weeks, 144 adult volunteers in Norway kept detailed diaries on food consumption, personal care product (PCP) use, and thermal paper (TP) handling. Concurrently, 24 h urine was collected and urinary levels of BPA, BPS, and BPF were analyzed using ultra-high performance liquid chromatography and tandem mass spectrometry (UPLC-MS-MS). In line with the information obtained from the first study day, bisphenol exposure from food, PCPs, TP, and dust was modeled primarily individual-based with probabilistic models. Estimates for BP excretion over 24 h were obtained with the models and compared to measured amounts. RESULTS: Modeled aggregate internal exposures covered the full range of measured urinary amounts for all BP analogs. In general, individual-based medians of modeled BPA exposures were in good agreement with the measurements, but individual-specific correlation was lacking. Modeled exposures mostly underestimated BPS and BPF levels in participants with positive measurements (53% and 8%), except for the P95 values of modeled BPS exposure that were higher than measured amounts if TP was handled. Most likely, diet and TP were the sources contributing the most to BP exposure in this study. Urinary measurements did not reveal a significant correlation between the amounts of canned food consumed, the number of PCPs used, or the number of TP handling events and levels of BPA, BPS, or BPF. CONCLUSIONS: The good agreement between the ranges of modeled BPA exposure and measured BPA amounts indicates that available concentrations, especially from the main exposure source food, mirror the exposure situation realistically, and suggests that the exposure model considers the relevant exposure sources. The lack of individual-specific correlations means that the individual measured amounts and modeled exposures did not vary in parallel, e.g. due to mismatch of BP concentrations in food, TP, and other sources, or delayed internal exposure. The underestimation of modeled BPS and BPF exposure suggests that not all relevant sources were included in the respective exposure models. This could be due to a lack of input data, e.g. for food items, or due to an increased replacement of BPA with structural analogs compared to the used concentration and occurrence data.


Subject(s)
Benzhydryl Compounds , Biological Monitoring , Phenols , Sulfones , Adult , Benzhydryl Compounds/urine , Chromatography, Liquid , Cosmetics , Diet , Environmental Exposure , Humans , Norway , Phenols/urine , Sulfones/urine , Tandem Mass Spectrometry
5.
Environ Sci Technol ; 53(15): 9181-9191, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31294980

ABSTRACT

The bisphenols S, F, and AF (BPS, BPF, and BPAF) are used to replace the endocrine disrupting chemical bisphenol A (BPA) while exerting estrogenic effects of comparable potency. We assessed the cumulative risk for the aforementioned BPs in Europe and compared the risk before and after the year 2011, which was when the first BPA restrictions became effective. For this, we probabilistically modeled external exposures from food, personal care products (PCPs), thermal paper, and dust (using the tools MCRA and PACEM for exposures from food and PCPs, respectively). We calculated internal concentrations of unconjugated BPs with substance-specific PBPK models and cumulated these concentrations normalized by estrogenic potency. The resulting mean internal cumulative exposures to unconjugated BPs were 3.8 and 2.1 ng/kg bw/day before and after restrictions, respectively. This decline was mainly caused by the replacement of BPA by BPS in thermal paper and the lower dermal uptake of BPS compared to BPA. However, the decline was not significant: the selected uncertainty intervals overlapped (P2.5-P97.5 uncertainty intervals of 2.7-4.9 and 1.3-6.3 ng/kg bw/day before and after restrictions, respectively). The upper uncertainty bounds for cumulative exposure were higher after restrictions, which reflects the larger uncertainty around exposures to substitutes compared to BPA.


Subject(s)
Benzhydryl Compounds , Estrogens , Estrone , Europe , Phenols
6.
Environ Health Perspect ; 126(7): 077002, 2018 07.
Article in English | MEDLINE | ID: mdl-29995627

ABSTRACT

BACKGROUND: The endocrine disrupting chemical bisphenol A (BPA) has been facing stricter regulations in recent years. BPA analogs, such as the bisphenols S, F, and AF (BPS, BPF, and BPAF) are increasingly used as replacement chemicals, although they were found to exert estrogenic effects similar to those of BPA. Research has shown that only the parent compounds have affinity to the estrogen receptors, suggesting that the pharmacokinetic behavior of bisphenols (BPs) can influence their potency. OBJECTIVES: Our goal was to compare the pharmacokinetic behaviors of BPA, BPS, BPF, and BPAF for different age groups after environmentally relevant external exposures by taking into account substance-specific metabolism kinetics and partitioning behavior. This comparison allowed us to investigate the consequences of replacing BPA with other BPs. METHODS: We readjusted a physiologically based pharmacokinetic (PBPK) model for peroral exposure to BPA and extended it to include dermal exposure. We experimentally assessed hepatic and intestinal glucuronidation kinetics of BPS, BPF, and BPAF to parametrize the model for these BPs and calibrated the BPS model with a biomonitoring study. We used the PBPK models to compare resulting internal exposures and focused on females of childbearing age in a two-dimensional Monte Carlo uncertainty analysis. RESULTS: Within environmentally relevant concentration ranges, BPAF and BPS were glucuronized at highest and lowest rates, respectively, in the intestine and the liver. The predominant routes of BPS and BPAF exposure were peroral and dermal exposure, respectively. The calibration of the BPS model with measured concentrations showed that enterohepatic recirculation may be important. Assuming equal external exposures, BPS exposure led to the highest internal concentrations of unconjugated BPs. CONCLUSIONS: Our data suggest that the replacement of BPA with structural analogs may not lower the risk for endocrine disruption. Exposure to both BPS and BPAF might be more critical than BPA exposure, if their respective estrogenic potencies are taken into account. https://doi.org/10.1289/EHP2739.


Subject(s)
Benzhydryl Compounds/pharmacokinetics , Endocrine Disruptors/pharmacokinetics , Environmental Exposure/analysis , Environmental Pollutants/pharmacokinetics , Phenols/pharmacokinetics , Sulfones/pharmacokinetics , Adolescent , Adult , Female , Humans , Models, Biological , Young Adult
7.
Environ Int ; 118: 245-256, 2018 09.
Article in English | MEDLINE | ID: mdl-29894934

ABSTRACT

Consumers regularly use household care and personal care products (HC&PCPs). Isothiazolinones are included in HC&PCPs as preservatives and are being held responsible for an epidemic rise in allergic contact dermatitis (ACD). The objective of this study was to assess the origin and extent of dermal exposure in order to evaluate the risk of ACD from isothiazolinones in HC&PCP. Individual-based aggregate dermal exposure to four isothiazolinones was estimated using the newly proposed Probabilistic Aggregated Consumer Exposure Model-Kinetic, Dermal (PACEM-KD) by combining the reported individual use patterns for HC&PCP in Switzerland (N = 669 (558 adults), ages 0-91) with isothiazolinone concentrations measured in products used by the individual person. PACEM-KD extends the original PACEM by considering exposure duration, product dilution and skin permeability. PACEM-KD-based higher-tier exposure on palms (99th percentile) was 15.4 ng/cm2, 1.3 ng/cm2, 0.9 ng/cm2, and 0.08 ng/cm2 for the isothiazolinones 1,2­Benzisothiazol­3­(2H)­one (BIT), 2­Octyl­3(2H)­isothiazolinone (OIT), 2­Methylisothiazolin­3(2H)­one (MI), and 5­Chloro­2­methyl­4­isothiazolin­3­one (CMI), respectively. Major sources of exposure to BIT included all-purpose cleaners, dishwashing detergent, and kitchen cleaner, while exposure to OIT mainly stems from a fungicide. For MI, the main contributors were dishwashing detergent and all-purpose wet wipes, and for CMI all-purpose cleaner. A Quantitative Risk Assessment (QRA) for BIT using Sensitization Assessment Factors (SAFs) indicates that around 1% of the Swiss population is at risk to be sensitized by BIT in cosmetics and household chemicals. For isothiazolinones in general the presented higher-tier modelling approach suggests that household cleaners are currently more important sources of exposure than cosmetics.


Subject(s)
Environmental Exposure , Household Products/adverse effects , Models, Statistical , Thiazoles , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Humans , Infant , Infant, Newborn , Middle Aged , Risk Assessment , Skin/chemistry , Skin/metabolism , Skin Absorption , Switzerland , Thiazoles/adverse effects , Thiazoles/analysis , Young Adult
8.
J Agric Food Chem ; 66(29): 7577-7588, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29944838

ABSTRACT

The production of toxic plant secondary metabolites (phytotoxins) for defense is a widespread phenomenon in the plant kingdom and is even present in agricultural crops. These phytotoxins may have similar characteristics to anthropogenic micropollutants in terms of persistence and toxicity. However, they are only rarely included in environmental risk assessments, partly because a systematic overview of phytotoxins is missing. Here, we present a newly developed, freely available database, Toxic Plants-PhytoToxins (TPPT), containing 1586 phytotoxins of potential ecotoxicological relevance in Central Europe linked to 844 plant species. Our database summarizes phytotoxin patterns in plant species and provides detailed biological and chemical information as well as in silico estimated properties. Using the database, we evaluated phytotoxins regarding occurrence, approximated from the frequencies of Swiss plant species; environmental behavior based on aquatic persistence and mobility; and toxicity. The assessment showed that over 34% of all phytotoxins are potential aquatic micropollutants and should be included in environmental investigations.


Subject(s)
Plants, Toxic/chemistry , Toxins, Biological/toxicity , Water Pollutants, Chemical/toxicity , Databases, Factual , Plants, Toxic/classification , Toxins, Biological/analysis , Water Pollutants, Chemical/analysis
9.
PLoS One ; 13(5): e0196549, 2018.
Article in English | MEDLINE | ID: mdl-29734351

ABSTRACT

To assess the environmental fate of engineered nanoparticles (ENPs), it is essential to understand their interactions with dissolved organic matter (DOM). The highly complex nature of the interactions between DOM and ENPs and other particulate matter (PM) requires investigating a wide range of material types under different conditions. However, despite repeated calls for an increased diversity of the DOM and PM studied, researchers increasingly focus on certain subsets of DOM and PM. Considering the discrepancy between the calls for more diversity and the research actually carried out, we hypothesize that materials that were studied more often are more visible in the scientific literature and therefore are more likely to be studied again. To investigate the plausibility of this hypothesis, we developed an agent-based model simulating the material choice in the experiments studying the interaction between DOM and PM between 1990 and 2015. The model reproduces the temporal trends in the choice of materials as well as the main properties of a network that displays the DOM and PM types investigated experimentally. The results, which support the hypothesis of a positive reinforcing material choice, help to explain why calls to increase the diversity of the materials studied are repeatedly made and why recent criticism states that the selection of materials is unbalanced.


Subject(s)
Bias , Selection Bias , Computer Simulation , Environmental Monitoring/methods , Humic Substances/analysis , Models, Chemical , Nanoparticles , Organic Chemicals/analysis , Particulate Matter/analysis , Research Design , Solubility , Water Pollutants, Chemical/analysis
10.
Environ Sci Technol ; 52(12): 6743-6760, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29791144

ABSTRACT

Chlorinated paraffins are industrial chemicals that can be subdivided into short-chain (SCCP), medium-chain (MCCP), and long-chain (LCCP) chlorinated paraffins. The global production volumes of MCCPs are nowadays suspected to be much higher than those of S- and LCCPs, and the few available studies on the environmental occurrence of chlorinated paraffins report often higher MCCP concentrations than S- or LCCP concentrations in the environment. The present review focuses, therefore, on MCCPs specifically and provides a literature overview and a data analysis of the production volumes, PBT properties (persistence, bioaccumulation potential, and toxicity), and the worldwide measured concentrations of MCCP in environmental samples, biota, and humans. Furthermore, we include our own measurements of technical CP formulations from China, the major global producing country, to estimate the global production amounts of MCCPs. The key findings from this review are that (1) MCCPs are toxic to the aquatic environment, and the available data suggest that they are also persistent; (2) available time trends for MCCPs in soil, biota, and most of the sediment cores show increasing time trends over the last years to decades; and (3) MCCP concentrations in sediment close to local sources exceed toxicity thresholds (i.e., the PNEC). Our study shows that overall, MCCPs are of growing concern, and regulatory actions should be considered seriously.


Subject(s)
Hydrocarbons, Chlorinated , Paraffin , China , Environmental Monitoring , Humans , Soil
11.
PLoS One ; 12(10): e0183768, 2017.
Article in English | MEDLINE | ID: mdl-28981534

ABSTRACT

Polychlorinated biphenyls (PCBs) are persistent organic compounds that are ubiquitously found in the environment. Their use and manufacture were restricted or banned in many countries in the 1970-1980s, however, they still persist in the antroposphere, the environment and in biota worldwide today. Conventions like the Convention on Long-range Transboundary Air Pollution encourage or bind the member parties to annually submit emission inventories of regulated air pollutants. Unfortunately, several member states have not yet reported PCB emissions. The identification and quantification of stocks and emissions sources is, however, an important precondition to handle and remove the remaining reservoirs of PCBs and, thus, to be able to reduce emissions and subsequently environmental exposure. Here, we estimate past, present, and future emissions of PCBs to air in Switzerland and provide emission factors for all relevant emission categories. Switzerland hereby represents a typical developed industrial country, and most of the assumptions and parameters presented here can be used to calculate PCB emission also for other countries. PCB emissions to air are calculated using a dynamic mass flow and emissions model for Switzerland, which is run for the years 1930-2100. The results point out the importance of the use of PCBs in open applications, which have largely been previously overlooked. Additionally, we show that PCBs will persist in applications during the coming decades with ongoing emissions. Especially the use of PCBs in open applications will cause Swiss emissions to remain above 100 kg PCB per year, even after the year 2030. Our developed model is available in Excel/VBA and can be downloaded with this article.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Polychlorinated Biphenyls/analysis , Models, Theoretical , Switzerland
12.
Environ Sci Technol ; 51(18): 10536-10545, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28876910

ABSTRACT

We report on two farms in Switzerland heavily contaminated by polychlorinated biphenyls (PCBs) and dioxins (PCDD/Fs), occurring in the first case from diffuse sources and in the second case from PCB-containing wall paint. Extensive measurements of PCBs and PCDD/Fs on site (soil, forage, and paint) and in cattle (blood, fat, and milk) allowed validation of our novel dynamic toxicokinetic model, which includes the transfer of contaminants from the mother cows to their suckling calf and the uptake of soil by grazing cattle. We show that for calves, the mother milk is the main uptake route of contaminants. For both cows and calves, ingestion of contaminated soil, although often overlooked, is an appreciable uptake path. The remediation of the contaminated stable lead to a 2-3 fold reduction of the PCB levels in animals within one year. The transfer of animals to an uncontaminated mountain site during summer proved to be an effective decontamination procedure with up to 50% reduction of the levels within three months. Our study calls for a rapid removal of PCB-containing materials in animal husbandry farms and shows that the diffuse contamination of soils will remain a source for PCBs and PCDD/Fs in our food chain for decades to come.


Subject(s)
Dioxins/chemistry , Furans/chemistry , Polychlorinated Biphenyls/chemistry , Soil Pollutants/chemistry , Animal Husbandry , Animals , Benzofurans , Cattle , Dioxins/pharmacokinetics , Female , Food Chain , Furans/pharmacokinetics , Lactation , Polychlorinated Biphenyls/pharmacokinetics , Polychlorinated Dibenzodioxins , Soil Pollutants/pharmacokinetics , Switzerland
13.
Environ Sci Technol ; 51(17): 9784-9791, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28719193

ABSTRACT

Polychlorinated biphenyls (PCBs) are persistent hazardous chemicals that are still detected in the atmosphere and other environmental media, although their production has been banned for several decades. At the long-term monitoring site, Zeppelin at Spitsbergen, different PCB congeners have been continuously measured for more than a decade. However, it is not clear what factors determine the seasonal and interannual variability of different (lighter versus heavier) PCB congeners. To investigate the influence of atmospheric transport patterns on PCB-28 and PCB-101 concentrations at Zeppelin, we applied the Lagrangian Particle Dispersion Model FLEXPART and calculated "footprints" that indicate the potential source regions of air arriving at Zeppelin. By means of a cluster analysis, we assigned groups of similar footprints to different transport regimes and analyzed the PCB concentrations according to the transport regimes. The concentrations of both PCB congeners are affected by the different transport regimes. For PCB-101, the origin of air masses from the European continent is primarily related to high concentrations; elevated PCB-101 concentrations in winter can be explained by the high frequency of this transport regime in winter, whereas PCB-101 concentrations are low when air is arriving from the oceans. For PCB-28, in contrast, concentrations are high during summer when air is mainly arriving from the oceans but low when air is arriving from the continents. The most likely explanation of this finding is that local emissions of PCB-28 mask the effect of long-range transport and determine the concentrations measured at Zeppelin.


Subject(s)
Air Pollutants , Environmental Monitoring , Polychlorinated Biphenyls , Atmosphere , Oceans and Seas , Svalbard
14.
Environ Sci Technol ; 51(8): 4482-4493, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28323424

ABSTRACT

Here a new global emission inventory of C4-C10 perfluoroalkanesulfonic acids (PFSAs) from the life cycle of perfluorooctanesulfonyl fluoride (POSF)-based products in 1958-2030 is presented. In particular, we substantially improve and expand the previous frameworks by incorporating missing pieces (e.g., emissions to soil through land treatment, overlooked precursors) and updating parameters (e.g., emission factors, degradation half-lives). In 1958-2015, total direct and indirect emissions of perfluorooctanesulfonic acid (PFOS) are estimated as 1228-4930 tonnes, and emissions of PFOS precursors are estimated as 1230-8738 tonnes and approximately 670 tonnes for x-perfluorooctanesulfonamides/sulfonamido ethanols (xFOSA/Es) and POSF, respectively. Most of these emissions occurred between 1958 and 2002, followed by a substantial decrease. This confirms the positive effect of the ongoing transition to phase out POSF-based products, although this transition may still require substantial time and cause substantial additional releases of PFOS (8-153 tonnes) and xFOSA/Es (4-698 tonnes) in 2016 to 2030. The modeled environmental concentrations obtained by coupling the emission inventory and a global multimedia mass-balance model generally agree well with reported field measurements, suggesting that the inventory captures the actual emissions of PFOS and xFOSA/Es for the time being despite remaining uncertainties. Our analysis of the key uncertainties and open questions of and beyond the inventory shows that, among others, degradation of side-chain fluorinated polymers in the environment and landfills can be a long-term, (potentially) substantial source of PFOS.


Subject(s)
Fluorocarbons , Models, Theoretical , Environment , Environmental Monitoring , Soil
15.
Environ Sci Technol ; 51(5): 2729-2737, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28139914

ABSTRACT

A fundamental problem associated with the vertical transport of engineered nanomaterials (ENMs) in saturated porous media is the occurrence of nonexponential, for example, nonmonotonic or linearly increasing, retention profiles. To investigate this problem, we compiled an extensive database of ENMs transport experiments in saturated porous media. Using this database we trained a decision tree that shows the order of importance, and range of influence, of the physicochemical factors that control the retention profile shape. Our results help identify domains where current particle-transport models can be used, but also highlight, for the first time, large domains where nonexponential retention profiles dominate and new approaches are needed to understand ENM transport. Importantly, highly advective flow and high ENM influent mass can mask the influence of other physicochemical factors on the retention profile shape; notably, this occurs in 50% of the experiments investigated. Where the relationship between physicochemical factors and retention profile shape can be investigated in detail, our results agree with, and provide validation for, the current understanding of how these factors influence ENM transport.


Subject(s)
Nanostructures/chemistry , Porosity
16.
Proc Natl Acad Sci U S A ; 114(10): E1756-E1765, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223482

ABSTRACT

Dissolved organic matter (DOM) strongly influences the properties and fate of engineered nanoparticles (ENPs) in aquatic environments. There is an extensive body of experiments on interactions between DOM and ENPs and also larger particles. [We denote particles on the nano- and micrometer scale as particulate matter (PM).] However, the experimental results are very heterogeneous, and a general mechanistic understanding of DOM-PM interactions is still missing. In this situation, recent reviews have called to expand the range of DOM and ENPs studied. Therefore, our work focuses on the diversity of the DOM and PM types investigated. Because the experimental results reported in the literature are highly disparate and difficult to structure, a new format of organizing, visualizing, and interpreting the results is needed. To this end, we perform a network analysis of 951 experimental results on DOM-PM interactions, which enabled us to analyze and quantify the diversity of the materials investigated. The diversity of the DOM-PM combinations studied has mostly been decreasing over the last 25 y, which is driven by an increasing focus on several frequently investigated materials, such as DOM isolated from fresh water, DOM in whole-water samples, and TiO2 and silver PM. Furthermore, there is an underrepresentation of studies into the effect of particle coating on PM-DOM interactions. Finally, it is of great importance that the properties of DOM used in experiments with PM, in particular the molecular weight and the content of aromatic and aliphatic carbon, are reported more comprehensively and systematically.


Subject(s)
Environmental Monitoring , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry , Models, Chemical , Molecular Weight , Nanoparticles/toxicity , Organic Chemicals/chemistry , Organic Chemicals/toxicity , Silver/chemistry , Solubility , Water/chemistry , Water Pollutants, Chemical/toxicity
17.
Environ Sci Technol ; 51(5): 2846-2853, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28191932

ABSTRACT

The reduction of emissions of mercury is a declared aim of the Minamata Convention, a UN treaty designed to protect human health and the environment from adverse effects of mercury. To assess the effectiveness of the convention in the future, better constraints about the current mercury emissions is a premise. In our study, we applied a top-down approach to quantify mercury emissions on the basis of atmospheric mercury measurements conducted at the remote high altitude monitoring station Jungfraujoch, Switzerland. We established the source-receptor relationships and by the means of atmospheric inversion we were able to quantify spatially resolved European emissions of 89 ± 14 t/a for elemental mercury. Our European emission estimate is 17% higher than the bottom-up emission inventory, which is within stated uncertainties. However, some regions with unexpectedly high emissions were identified. Stationary combustion, in particular in coal-fired power plants, is found to be the main responsible sector for increased emission estimates. Our top-down approach, based on measurements, provides an independent constraint on mercury emissions, helps to improve and refine reported emission inventories, and can serve for continued assessment of future changes in emissions independent from bottom-up inventories.


Subject(s)
Coal , Mercury , Air Pollutants , Altitude , Environmental Monitoring , Humans , Power Plants , Research
18.
Environ Sci Technol ; 51(6): 3269-3277, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28240875

ABSTRACT

Two small-scale field studies were conducted to investigate the transfer of substances from products into dust due to direct and air-mediated transfer. The project focused on semivolatile organic compounds (SVOCs), which are frequently found in and re-emitted from dust. For the field studies, four artificial products containing deuterium-labeled SVOCs (eight phthalates and adipates) were installed in residential indoor environments. Two plastic products were installed vertically to investigate substance transfer due to evaporation into air. One plastic product and a carpet were installed horizontally to investigate the direct transfer from source to dust. A pyrethroid was intentionally released by spraying a commercial spray. Dust samples were collected from the floor, elevated surfaces in the room and the surfaces of the horizontally installed products. We observed that the dust concentrations of substances exclusively transferred via air were similar at different collection sites, but the concentrations of chemicals present in horizontal products were up to 3 orders of magnitude higher in dust deposited on the source. We conclude that direct transfer from source into dust substantially increases the final SVOC concentration in dust in contact with the source, regardless of the vapor pressure of investigated SVOCs, and may lead to larger human exposure.


Subject(s)
Air Pollution, Indoor , Dust , Humans , Volatile Organic Compounds
19.
Environ Sci Technol ; 51(5): 2854-2863, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28157288

ABSTRACT

The need for an environmental risk assessment for engineered nanomaterials (ENM) necessitates the knowledge about their environmental emissions. Material flow models (MFA) have been used to provide predicted environmental emissions but most current nano-MFA models consider neither the rapid development of ENM production nor the fact that a large proportion of ENM are entering an in-use stock and are released from products over time (i.e., have a lag phase). Here we use dynamic probabilistic material flow modeling to predict scenarios of the future flows of four ENM (nano-TiO2, nano-ZnO, nano-Ag and CNT) to environmental compartments and to quantify their amounts in (temporary) sinks such as the in-use stock and ("final") environmental sinks such as soil and sediment. In these scenarios, we estimate likely future amounts if the use and distribution of ENM in products continues along current trends (i.e., a business-as-usual approach) and predict the effect of hypothetical trends in the market development of nanomaterials, such as the emergence of a new widely used product or the ban on certain substances, on the flows of nanomaterials to the environment in years to come. We show that depending on the scenario and the product type affected, significant changes of the flows occur over time, driven by the growth of stocks and delayed release dynamics.


Subject(s)
Environmental Pollutants , Nanostructures , Environment , Models, Theoretical , Soil
20.
Environ Pollut ; 220(Pt B): 891-899, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27876229

ABSTRACT

Persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), are ubiquitous environmental contaminants that have been targeted by national regulations since the 1970-1980s, followed in 2004 by the worldwide regulation under the Stockholm Convention on POPs. However, concerns are growing regarding the emergence of additional POP-like substances, such as chlorinated paraffins (CPs), which have particularly large production volumes. Whereas short-chain CPs (SCCPs) have recently been restricted in Europe and are currently under evaluation for inclusion into the Stockholm Convention, medium-chain CPs (MCCPs) have received little attention. On the one hand, temporal trends of CPs in the environment have hardly been investigated. On the other hand, the effectiveness of the Stockholm Convention on environmental levels of PCBs is still a matter of debate. Here, we reconstructed temporal trends of SCCPs, MCCPs, and PCBs in archived soil samples from six sampling sites in Switzerland, covering the period 1989-2014 (respectively 1988-2013 for one site). Concentrations of SCCPs have decreased in soil since 1994, which indicates positive effects of the reduction of production of SCCPs in Europe and the increasingly stringent regulation. However, the decline in soil is slow with a halving time of 18 years. Concentrations of MCCPs have continuously increased in soil over the entire period 1989-2014, with a doubling between 2009 and 2014. The concentrations of MCCPs have surpassed those of SCCPs, showing their relevance today, partly as replacements for SCCPs. Soil concentrations of PCBs peaked in 1999, i.e. three decades later than worldwide production and use of PCBs, but earlier than the entry into force of the Stockholm Convention. PCBs follow a decline in soil with a halving time of approx. 8 years. This study shows the usefulness of sample archives for the reconstruction and interpretation of time trends of persistent environmental contaminants.


Subject(s)
Environmental Monitoring/standards , Paraffin/analysis , Paraffin/standards , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/standards , Soil Pollutants/analysis , Soil Pollutants/standards , Environmental Pollution , Europe , Guidelines as Topic , Switzerland , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...