Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 142(23): 4010-25, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26483210

ABSTRACT

Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active ß-catenin revealed differential expression among blastomeres of 8- to 10-cell human embryos. The UCSFB lines formed derivatives of the three germ layers and CDX2-positive progeny, from which we derived the first human trophoblast stem cell line. Our data suggest heterogeneity among early-stage blastomeres and that the UCSFB lines have unique properties, indicative of a more immature state than conventional lines.


Subject(s)
Blastomeres/cytology , Embryo Culture Techniques , Embryonic Stem Cells/cytology , Trophoblasts/cytology , Blastocyst/cytology , Cell Differentiation , Cell Line , Cell Lineage , DNA Methylation , Endoderm/metabolism , Fibroblasts/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Growth Differentiation Factor 15/metabolism , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Neural Stem Cells/cytology , Oligonucleotide Array Sequence Analysis , Transcription, Genetic , Transcriptome , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...