Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(8): e0236200, 2020.
Article in English | MEDLINE | ID: mdl-32846430

ABSTRACT

Indo-Pacific lionfish have become invasive throughout the western Atlantic. Their predatory effects have been the focus of much research and are suggested to cause declines in native fish abundance and diversity across the invaded range. However, little is known about their non-consumptive effects, or their effects on invertebrates. Lionfish use shelters on the reef, thus there is potential for competition with other shelter-dwelling organisms. We demonstrate similar habitat associations between invasive lionfish, native spiny lobsters (Panulirus argus) and native long-spined sea urchins (Diadema antillarum), indicating the potential for competition. We then used a laboratory experiment to compare activity and shelter use of each species when alone and when lionfish were paired with each native species. Spiny lobsters increased their activity but did not change their shelter use in the presence of a lionfish, whilst long-spined sea urchins changed neither their activity nor shelter use. However, lionfish reduced their shelter use in the presence of spiny lobsters and long-spined sea urchins. This study highlights the importance not only of testing for the non-consumptive effects of invasive species, but also exploring whether native species exert non-consumptive effects on the invasive.


Subject(s)
Fishes/physiology , Homing Behavior , Introduced Species , Palinuridae/physiology , Sea Urchins/physiology , Animal Distribution , Animals , Caribbean Region , Coral Reefs , Population Dynamics
2.
Sci Rep ; 9(1): 783, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30692608

ABSTRACT

Caribbean lionfish (Pterois spp.) are considered the most heavily impacting invasive marine vertebrate ever recorded. However, current management is largely inadequate, relying on opportunistic culling by recreational SCUBA divers. Culling efficiency could be greatly improved by exploiting natural aggregations, but to date this behaviour has only been recorded anecdotally, and the drivers are unknown. We found aggregations to be common in situ, but detected no conspecific attraction through visual or olfactory cues in laboratory experiments. Aggregating individuals were on average larger, but showed no further differences in morphology or life history. However, using visual assessments and 3D modelling we show lionfish prefer broad-scale, but avoid fine-scale, habitat complexity. We therefore suggest that lionfish aggregations are coincidental based on individuals' mutual attraction to similar reef structure to maximise hunting efficiency. Using this knowledge, artificial aggregation devices might be developed to concentrate lionfish densities and thus improve culling efficiency.


Subject(s)
Animal Culling/methods , Behavior, Animal/physiology , Perciformes/physiology , Animals , Ecosystem , Female , Introduced Species , Male , Models, Biological , Population Density
3.
R Soc Open Sci ; 4(5): 170027, 2017 May.
Article in English | MEDLINE | ID: mdl-28573007

ABSTRACT

Invasive lionfish (Pterois volitans and P. miles) have spread widely across the western Atlantic and are recognized as a major threat to native marine biodiversity. Although lionfish inhabit both shallow reefs and mesophotic coral ecosystems (MCEs; reefs from 30 to 150 m depth), the primary management response implemented by many countries has been diver-led culling limited to reefs less than 30 m. However, many reef fish undergo ontogenetic migrations, with the largest and therefore most fecund individuals found at greatest depths. Here, we study lionfish density, body size, maturity and dietary patterns across the depth gradient from the surface down to 85 m on heavily culled reefs around Utila, Honduras. We found lionfish at increased densities, body size and weight on MCEs compared with shallow reefs, with MCEs also containing the greatest proportion of actively spawning females, while shallow reefs contained the greatest proportion of immature lionfish. We then compared lionfish behaviour in response to divers on shallow culled and mesophotic unculled Utilan reefs, and on shallow unculled reefs in Tela Bay, on the Honduran mainland. We found that mesophotic lionfish exhibited high alert distances, consistent with individuals previously exposed to culling despite being below the depth limits of removal. In addition, when examining stomach content, we found that fish were the major component of lionfish diets across the depth gradient. Importantly, our results suggest that despite adjacent shallow culling, MCEs retain substantial lionfish populations that may be disproportionately contributing towards continued lionfish recruitment onto the shallow reefs of Utila, potentially undermining current culling-based management.

4.
PeerJ ; 5: e2853, 2017.
Article in English | MEDLINE | ID: mdl-28168098

ABSTRACT

Mesophotic coral ecosystems (MCEs, reefs 30-150 m) are understudied, yet the limited research conducted has been biased towards large sessile taxa, such as scleractinian corals and sponges, or mobile taxa such as fishes. Here we investigate zooplankton communities on shallow reefs and MCEs around Utila on the southern Mesoamerican Barrier Reef using planktonic light traps. Zooplankton samples were sorted into broad taxonomic groups. Our results indicate similar taxonomic zooplankton richness and overall biomass between shallow reefs and MCEs. However, the abundance of larger bodied (>2 mm) zooplanktonic groups, including decapod crab zoea, mysid shrimps and peracarid crustaceans, was higher on MCEs than shallow reefs. Our findings highlight the importance of considering zooplankton when identifying broader reef community shifts across the shallow reef to MCE depth gradient.

SELECTION OF CITATIONS
SEARCH DETAIL
...