Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 4(18): 9003-9011, 2014.
Article in English | MEDLINE | ID: mdl-32051760

ABSTRACT

Advances in probes for cellular imaging have driven discoveries in biology and medicine. Primarily, antibodies and small molecules have been made for contrast enhancement of specific proteins. The development of new dendrimer-based tools offers opportunities to tune cellular internalization and targeting, image multiple modalities in the same molecule and explore therapeutics. The translocator protein (TSPO) offers an ideal target to develop dendrimer tools because it is well characterized and implicated in a number of disease states. The TSPO-targeted dendrimers reported here, primarily ClPhIQ-PAMAM-Gd-Liss, are cell membrane permeable nanoparticles that enable labeling of TSPO and provide contrast in fluorescence, electron microscopy and magnetic resonance imaging. The molecular binding affinity for TSPO was found to be 0.51 µM, 3 times greater than the monomeric agents previously demonstrated in our laboratory. The relaxivity per Gd3+ of the ClPhIQ23-PAMAM-Gd18 dendrimer was 7.7 and 8.0 mM-1 s-1 for r 1 and r 2 respectively, approximately double that of the clinically used monomeric Gd3+ chelates. In vitro studies confirmed molecular selectively for labeling TSPO in the mitochondria of C6 rat glioma and MDA-MB-231 cell lines. Fluorescence co-registration with Mitotracker Green® and increased contrast of osmium-staining in electron microscopy confirmed mitochondrial labeling of these TSPO-targeted agents. Taken collectively these experiments demonstrate the versatility of conjugation of our PAMAM dendrimeric chemistry to allow multi-modality agents to be prepared. These agents target organelles and use complementary imaging modalities in vitro, potentially allowing disease mechanism studies with high sensitivity and high resolution techniques.

2.
Bioconjug Chem ; 20(11): 2082-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19863077

ABSTRACT

While it has become common practice for dendrimers to deliver imaging and therapeutic agents, there are few reported examples of cellular internalization of dendrimers. Moreover, targeting of dendrimers to the mitochondria in cells has not yet been reported. Previously, we have delivered small molecule imaging agents into glioma and breast cancer cells by targeting the translocator protein (TSPO; formerly known as the peripheral benzodiazepine receptor or PBR) with a family of high-affinity conjugable ligands. The 18 kDa multimeric TSPO is expressed in steroid-producing cells, primarily on the outer mitochondrial membrane. This protein is a prime candidate for molecular targeting because tumors and other disease-related cells contain high densities of TSPO. Here, we present the synthesis, characterization, and cellular internalization into C6 rat glioma cells of a TSPO targeted dendrimer imaging agent.


Subject(s)
Dendrimers/pharmacokinetics , Diagnostic Imaging/methods , Drug Carriers/chemistry , Drug Delivery Systems/methods , Receptors, GABA/analysis , Animals , Cell Membrane Permeability , Dendrimers/therapeutic use , Glioma/diagnosis , Glioma/pathology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Rats , Receptors, GABA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...