Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Metab ; 36(5): 969-983.e10, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38490211

ABSTRACT

The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.


Subject(s)
Acetyl-CoA Carboxylase , CD8-Positive T-Lymphocytes , Lipid Metabolism , Tumor Microenvironment , Acetyl-CoA Carboxylase/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Humans , Fatty Acids/metabolism , Female , Cell Line, Tumor , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mitochondria/metabolism
2.
Cancer Res ; 82(23): 4386-4399, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36126165

ABSTRACT

Protein synthesis supports robust immune responses. Nutrient competition and global cell stressors in the tumor microenvironment (TME) may impact protein translation in T cells and antitumor immunity. Using human and mouse tumors, we demonstrated here that protein translation in T cells is repressed in solid tumors. Reduced glucose availability to T cells in the TME led to activation of the unfolded protein response (UPR) element eIF2α (eukaryotic translation initiation factor 2 alpha). Genetic mouse models revealed that translation attenuation mediated by activated p-eIF2α undermines the ability of T cells to suppress tumor growth. Reprograming T-cell metabolism was able to alleviate p-eIF2α accumulation and translational attenuation in the TME, allowing for sustained protein translation. Metabolic and pharmacological approaches showed that proteasome activity mitigates induction of p-eIF2α to support optimal antitumor T-cell function, protecting from translation attenuation and enabling prolonged cytokine synthesis in solid tumors. Together, these data identify a new therapeutic avenue to fuel the efficacy of tumor immunotherapy. SIGNIFICANCE: Proteasome function is a necessary cellular component for endowing T cells with tumor killing capacity by mitigating translation attenuation resulting from the unfolded protein response induced by stress in the tumor microenvironment.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Mice , Animals , T-Lymphocytes/metabolism , Proteasome Endopeptidase Complex , Neoplasms/therapy , Tumor Microenvironment , Immunotherapy/methods , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism
3.
Front Cell Dev Biol ; 10: 867341, 2022.
Article in English | MEDLINE | ID: mdl-35573704

ABSTRACT

The endoplasmic reticulum (ER) is a large continuous membranous organelle that plays a central role as the hub of protein and lipid synthesis while the mitochondria is the principal location for energy production. T cells are an immune subset exhibiting robust dependence on ER and mitochondrial function based on the need for protein synthesis and secretion and metabolic dexterity associated with foreign antigen recognition and cytotoxic effector response. Intimate connections exist at mitochondrial-ER contact sites (MERCs) that serve as the structural and biochemical platforms for cellular metabolic homeostasis through regulation of fission and fusion as well as glucose, Ca2+, and lipid exchange. Work in the tumor immunotherapy field indicates that the complex interplay of nutrient deprivation and tumor antigen stimulation in the tumor microenvironment places stress on the ER and mitochondria, causing dysfunction in organellar structure and loss of metabolic homeostasis. Here, we assess prior literature that establishes how the structural interface of these two organelles is impacted by the stress of solid tumors along with recent advances in the manipulation of organelle homeostasis at MERCs in T cells. These findings provide strong evidence for increased tumor immunity using unique therapeutic avenues that recharge cellular metabolic homeostasis in T cells.

4.
FASEB J ; 35(1): e21148, 2021 01.
Article in English | MEDLINE | ID: mdl-33196122

ABSTRACT

Mitochondrial membrane potential (ΔΨm) is a global indicator of mitochondrial function. Previous reports on heterogeneity of ΔΨm were qualitative or semiquantitative. Here, we quantified intercellular differences in ΔΨm in unsynchronized human cancer cells, cells synchronized in G1, S, and G2, and human fibroblasts. We assessed ΔΨm using a two-pronged microscopy approach to measure relative fluorescence of tetramethylrhodamine methyl ester (TMRM) and absolute values of ΔΨm. We showed that ΔΨm is more heterogeneous in cancer cells compared to fibroblasts, and it is maintained throughout the cell cycle. The effect of chemical inhibition of the respiratory chain and ATP synthesis differed between basal, low and high ΔΨm cells. Overall, our results showed that intercellular heterogeneity of ΔΨm is mainly modulated by intramitochondrial factors, it is independent of the ΔΨm indicator and it is not correlated with intercellular heterogeneity of plasma membrane potential or the phases of the cell cycle.


Subject(s)
Cell Cycle , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Neoplasms/metabolism , Hep G2 Cells , Humans , Mitochondria/pathology , Neoplasms/pathology
5.
FASEB J ; 33(7): 8186-8201, 2019 07.
Article in English | MEDLINE | ID: mdl-30951369

ABSTRACT

Statins, widely used to treat hypercholesterolemia, inhibit the 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme of de novo cholesterol (Chol) synthesis. Statins have been also reported to slow tumor progression. In cancer cells, ATP is generated both by glycolysis and oxidative phosphorylation. Mitochondrial membrane potential (ΔΨ), a readout of mitochondrial metabolism, is sustained by the oxidation of respiratory substrates in the Krebs cycle to generate NADH and flavin adenine dinucleotide, which are further oxidized by the respiratory chain. Here, we studied the short-term effects of statins (3-24 h) on mitochondrial metabolism on cancer cells. Lovastatin (LOV) and simvastatin (SIM) increased ΔΨ in HepG2 and Huh7 human hepatocarcinoma cells and HCC4006 human lung adenocarcinoma cells. Mitochondrial hyperpolarization after LOV and SIM was dose and time dependent. Maximal increase in ΔΨ occurred at 10 µM and 24 h for both statins. The structurally unrelated atorvastatin also hyperpolarized mitochondria in HepG2 cells. Cellular and mitochondrial Chol remained unchanged after SIM. Both LOV and SIM decreased basal respiration, ATP-linked respiration, and ATP production. LOV and SIM did not change the rate of lactic acid production. In summary, statins modulate mitochondrial metabolism in cancer cells independently of the Chol content in cellular membranes without affecting glycolysis.-Christie, C. F., Fang, D., Hunt, E. G., Morris, M. E., Rovini, A., Heslop, K. A., Beeson, G. C., Beeson, C. C., Maldonado, E. N. Statin-dependent modulation of mitochondrial metabolism in cancer cells is independent of cholesterol content.


Subject(s)
Adenocarcinoma of Lung/metabolism , Carcinoma, Hepatocellular/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Liver Neoplasms/metabolism , Lovastatin/pharmacology , Lung Neoplasms/metabolism , Mitochondria, Liver/metabolism , Simvastatin/pharmacology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...