Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 5196, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30914660

ABSTRACT

Little is known about the combined effects of stressors on social immunity of honey bees (Apis mellifera) and related gene expression. The interaction between sublethal doses of a neurotoxin, clothianidin, and the ectoparasite, Varroa destructor, was examined by measuring differentially expressed genes (DEGs) in brains, deformed wing virus (DWV) and the proportion and intensity of self-grooming. Evidence for an interaction was observed between the stressors in a reduction in the proportion of intense groomers. Only the lowest dose of clothianidin alone reduced the proportion of self-groomers and increased DWV levels. V. destructor shared a higher proportion of DEGs with the combined stressors compared to clothianidin, indicating that the effects of V. destructor were more pervasive than those of clothianidin when they were combined. The number of up-regulated DEGs were reduced with the combined stressors compared to clothianidin alone, suggesting an interference with the impacts of clothianidin. Clothianidin and V. destructor affected DEGs from different biological pathways but shared impacts on pathways related to neurodegenerative disorders, like Alzheimer's, which could be related to neurological dysfunction and may explain their negative impacts on grooming. This study shows that the combination of clothianidin and V. destructor resulted in a complex and non-additive interaction.


Subject(s)
Bees/genetics , Bees/parasitology , Gene Expression Regulation/drug effects , Grooming/drug effects , Guanidines/toxicity , Neonicotinoids/toxicity , Thiazoles/toxicity , Varroidae/physiology , Animals , Bees/drug effects , Bees/virology , Down-Regulation/drug effects , Down-Regulation/genetics , Genome, Viral , Up-Regulation/drug effects , Up-Regulation/genetics
2.
Behav Genet ; 47(3): 335-344, 2017 05.
Article in English | MEDLINE | ID: mdl-28154949

ABSTRACT

Honey bee (Apis mellifera) grooming behavior is an important mechanism of resistance against the parasitic mite Varroa destructor. This research was conducted to study associations between grooming behavior and the expression of selected immune, neural, detoxification, developmental and health-related genes. Individual bees tested in a laboratory assay for various levels of grooming behavior in response to V. destructor were also analyzed for gene expression. Intense groomers (IG) were most efficient in that they needed significantly less time to start grooming and fewer grooming attempts to successfully remove mites from their bodies than did light groomers (LG). In addition, the relative abundance of the neurexin-1 mRNA, was significantly higher in IG than in LG, no groomers (NG) or control (bees without mite). The abundance of poly U binding factor kd 68 and cytochrome p450 mRNAs were significantly higher in IG than in control bees. The abundance of hymenoptaecin mRNA was significantly higher in IG than in NG, but it was not different from that of control bees. The abundance of vitellogenin mRNA was not changed by grooming activity. However, the abundance of blue cheese mRNA was significantly reduced in IG compared to LG or NG, but not to control bees. Efficient removal of mites by IG correlated with different gene expression patterns in bees. These results suggest that the level of grooming behavior may be related to the expression pattern of vital honey bee genes. Neurexin-1, in particular, might be useful as a bio-marker for behavioral traits in bees.


Subject(s)
Bees/genetics , Bees/parasitology , Gene Expression/genetics , Grooming/physiology , Animals , Gene Expression Profiling , Transcriptome , Varroidae
4.
BMC Genomics ; 17(1): 926, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27852222

ABSTRACT

BACKGROUND: Varroa mites are widely considered the biggest honey bee health problem worldwide. Until recently, Varroa jacobsoni has been found to live and reproduce only in Asian honey bee (Apis cerana) colonies, while V. destructor successfully reproduces in both A. cerana and A. mellifera colonies. However, we have identified an island population of V. jacobsoni that is highly destructive to A. mellifera, the primary species used for pollination and honey production. The ability of these populations of mites to cross the host species boundary potentially represents an enormous threat to apiculture, and is presumably due to genetic variation that exists among populations of V. jacobsoni that influences gene expression and reproductive status. In this work, we investigate differences in gene expression between populations of V. jacobsoni reproducing on A. cerana and those either reproducing or not capable of reproducing on A. mellifera, in order to gain insight into differences that allow V. jacobsoni to overcome its normal species tropism. RESULTS: We sequenced and assembled a de novo transcriptome of V. jacobsoni. We also performed a differential gene expression analysis contrasting biological replicates of V. jacobsoni populations that differ in their ability to reproduce on A. mellifera. Using the edgeR, EBSeq and DESeq R packages for differential gene expression analysis, we found 287 differentially expressed genes (FDR ≤ 0.05), of which 91% were up regulated in mites reproducing on A. mellifera. In addition, mites found reproducing on A. mellifera showed substantially more variation in expression among replicates. We searched for orthologous genes in public databases and were able to associate 100 of these 287 differentially expressed genes with a functional description. CONCLUSIONS: There is differential gene expression between the two mite groups, with more variation in gene expression among mites that were able to reproduce on A. mellifera. A small set of genes showed reduced expression in mites on the A. mellifera host, including putative transcription factors and digestive tract developmental genes. The vast majority of differentially expressed genes were up-regulated in this host. This gene set showed enrichment for genes associated with mitochondrial respiratory function and apoptosis, suggesting that mites on this host may be experiencing higher stress, and may be less optimally adapted to parasitize it. Some genes involved in reproduction and oogenesis were also overexpressed, which should be further studied in regards to this host shift.


Subject(s)
Bees/parasitology , Transcriptome , Varroidae/genetics , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Cluster Analysis , Databases, Genetic , Down-Regulation , Female , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Sequence Analysis, DNA , Up-Regulation , Varroidae/metabolism , Varroidae/physiology
5.
Proc Natl Acad Sci U S A ; 113(4): 1020-5, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26755583

ABSTRACT

Sexual reproduction brings genes from two parents (matrigenes and patrigenes) together into one individual. These genes, despite being unrelated, should show nearly perfect cooperation because each gains equally through the production of offspring. However, an individual's matrigenes and patrigenes can have different probabilities of being present in other relatives, so kin selection could act on them differently. Such intragenomic conflict could be implemented by partial or complete silencing (imprinting) of an allele by one of the parents. Evidence supporting this theory is seen in offspring-mother interactions, with patrigenes favoring acquisition of more of the mother's resources if some of the costs fall on half-siblings who do not share the patrigene. The kinship theory of intragenomic conflict is little tested in other contexts, but it predicts that matrigene-patrigene conflict may be rife in social insects. We tested the hypothesis that honey bee worker reproduction is promoted more by patrigenes than matrigenes by comparing across nine reciprocal crosses of two distinct genetic stocks. As predicted, hybrid workers show reproductive trait characteristics of their paternal stock, (indicating enhanced activity of the patrigenes on these traits), greater patrigenic than matrigenic expression, and significantly increased patrigenic-biased expression in reproductive workers. These results support both the general prediction that matrigene-patrigene conflict occurs in social insects and the specific prediction that honey bee worker reproduction is driven more by patrigenes. The success of these predictions suggests that intragenomic conflict may occur in many contexts where matrigenes and patrigenes have different relatednesses to affected kin.


Subject(s)
Bees/genetics , Animals , Bees/physiology , Crosses, Genetic , DNA Methylation , Family , Female , Male , Polymorphism, Single Nucleotide , Reproduction
6.
Article in English | MEDLINE | ID: mdl-24708125

ABSTRACT

The complete mitochondrial genome from an Africanized honey bee population (AHB, derived from Apis mellifera scutellata) was assembled and analyzed. The mitogenome is 16,411 bp long and contains the same gene repertoire and gene order as the European honey bee (13 protein coding genes, 22 tRNA genes and 2 rRNA genes). ND4 appears to use an alternate start codon and the long rRNA gene is 48 bp shorter in AHB due to a deletion in a terminal AT dinucleotide repeat. The dihydrouracil arm is missing from tRNA-Ser (AGN) and tRNA-Glu is missing the TV loop. The A + T content is comparable to the European honey bee (84.7%), which increases to 95% for the 3rd position in the protein coding genes.


Subject(s)
Bees/genetics , Genome, Insect , Genome, Mitochondrial , Introduced Species , Animals , Base Pairing/genetics , DNA, Circular/genetics , DNA, Mitochondrial/genetics
7.
Front Genet ; 6: 343, 2015.
Article in English | MEDLINE | ID: mdl-26648977

ABSTRACT

Hybrid effects are often exhibited asymmetrically between reciprocal families. One way this could happen is if silencing of one parent's allele occurs in one lineage but not the other, which could affect the phenotypes of the hybrids asymmetrically by silencing that allele in only one of the hybrid families. We have previously tested for allele-specific expression biases in hybrids of European and Africanized honeybees and we found that there was an asymmetric overabundance of genes showing a maternal bias in the family with a European mother. Here, we further analyze allelic bias in these hybrids to ascertain whether they may underlie previously described asymmetries in metabolism and aggression in similar hybrid families and we speculate on what mechanisms may produce this biased allele usage. We find that there are over 500 genes that have some form of biased allele usage and over 200 of these are biased toward the maternal allele but only in the family with European maternity, mirroring the pattern observed for aggression and metabolic rate. This asymmetrically biased set is enriched for genes in loci associated with aggressive behavior and also for mitochondrial-localizing proteins. It contains many genes that play important roles in metabolic regulation. Moreover we find genes relating to the piwi-interacting RNA (piRNA) pathway, which is involved in chromatin modifications and epigenetic regulation and may help explain the mechanism underlying this asymmetric allele use. Based on these findings and previous work investigating aggression and metabolism in bees, we propose a novel hypothesis; that the asymmetric pattern of biased allele usage in these hybrids is a result of inappropriate use of piRNA-mediated nuclear-cytoplasmic signaling that is normally used to modulate aggression in honeybees. This is the first report of widespread asymmetric effects on allelic expression in hybrids and may represent a novel mechanism for gene regulation.

8.
G3 (Bethesda) ; 5(8): 1657-62, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26048562

ABSTRACT

Parent-specific gene expression (PSGE) is little known outside of mammals and plants. PSGE occurs when the expression level of a gene depends on whether an allele was inherited from the mother or the father. Kin selection theory predicts that there should be extensive PSGE in social insects because social insect parents can gain inclusive fitness benefits by silencing parental alleles in female offspring. We searched for evidence of PSGE in honey bees using transcriptomes from reciprocal crosses between European and Africanized strains. We found 46 transcripts with significant parent-of-origin effects on gene expression, many of which overexpressed the maternal allele. Interestingly, we also found a large proportion of genes showing a bias toward maternal alleles in only one of the reciprocal crosses. These results indicate that PSGE may occur in social insects. The nonreciprocal effects could be largely driven by hybrid incompatibility between these strains. Future work will help to determine if these are indeed parent-of-origin effects that can modulate inclusive fitness benefits.


Subject(s)
Bees/genetics , Gene Expression , Alleles , Animals , Bees/growth & development , Bees/metabolism , Brain/metabolism , Crossing Over, Genetic , Female , Genetic Linkage , Genotype , Larva/metabolism , Male , Polymorphism, Single Nucleotide
9.
BMC Genomics ; 16: 107, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25765996

ABSTRACT

BACKGROUND: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid. RESULTS: Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides. CONCLUSIONS: The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.


Subject(s)
Bees/genetics , Evolution, Molecular , Meiosis/genetics , Recombination, Genetic , Animals , Base Composition/genetics , Chromosome Mapping , Chromosome Segregation/genetics , Chromosomes/genetics , Genome, Insect/genetics
10.
BMC Genomics ; 15: 86, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24479613

ABSTRACT

BACKGROUND: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. RESULTS: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. CONCLUSIONS: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.


Subject(s)
Bees/genetics , Genes, Insect , Animals , Base Composition , Databases, Genetic , Interspersed Repetitive Sequences/genetics , Molecular Sequence Annotation , Open Reading Frames/genetics , Peptides/analysis , Sequence Analysis, RNA , Sequence Homology, Amino Acid
11.
PLoS One ; 7(11): e47269, 2012.
Article in English | MEDLINE | ID: mdl-23133594

ABSTRACT

Populations of honey bees in North America have been experiencing high annual colony mortality for 15-20 years. Many apicultural researchers believe that introduced parasites called Varroa mites (V. destructor) are the most important factor in colony deaths. One important resistance mechanism that limits mite population growth in colonies is the ability of some lines of honey bees to groom mites from their bodies. To search for genes influencing this trait, we used an Illumina Bead Station genotyping array to determine the genotypes of several hundred worker bees at over a thousand single-nucleotide polymorphisms in a family that was apparently segregating for alleles influencing this behavior. Linkage analyses provided a genetic map with 1,313 markers anchored to genome sequence. Genotypes were analyzed for association with grooming behavior, measured as the time that individual bees took to initiate grooming after mites were placed on their thoraces. Quantitative-trait-locus interval mapping identified a single chromosomal region that was significant at the chromosome-wide level (p<0.05) on chromosome 5 with a LOD score of 2.72. The 95% confidence interval for quantitative trait locus location contained only 27 genes (honey bee official gene annotation set 2) including Atlastin, Ataxin and Neurexin-1 (AmNrx1), which have potential neurodevelopmental and behavioral effects. Atlastin and Ataxin homologs are associated with neurological diseases in humans. AmNrx1 codes for a presynaptic protein with many alternatively spliced isoforms. Neurexin-1 influences the growth, maintenance and maturation of synapses in the brain, as well as the type of receptors most prominent within synapses. Neurexin-1 has also been associated with autism spectrum disorder and schizophrenia in humans, and self-grooming behavior in mice.


Subject(s)
Bees/genetics , Bees/physiology , Chromosome Mapping/methods , Mites/genetics , Alleles , Alternative Splicing , Animals , Bees/parasitology , Computational Biology/methods , Expressed Sequence Tags , Female , Genetic Linkage , Genotype , Lod Score , Models, Genetic , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Polymorphism, Single Nucleotide , Protein Isoforms , Quantitative Trait Loci
12.
PLoS One ; 7(11): e48276, 2012.
Article in English | MEDLINE | ID: mdl-23133626

ABSTRACT

Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.


Subject(s)
Bees/parasitology , Animals , Beekeeping , Behavior, Animal , Chromosome Mapping/methods , Dopamine/metabolism , Drosophila , Female , Genetic Linkage , Genotype , Host-Parasite Interactions/genetics , Lod Score , Male , Mite Infestations/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Varroidae
13.
Proc Natl Acad Sci U S A ; 109(26): E1801-10, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22691501

ABSTRACT

A fundamental problem in meta-analysis is how to systematically combine information from multiple statistical tests to rigorously evaluate a single overarching hypothesis. This problem occurs in systems biology when attempting to map genomic attributes to complex phenotypes such as behavior. Behavior and other complex phenotypes are influenced by intrinsic and environmental determinants that act on the transcriptome, but little is known about how these determinants interact at the molecular level. We developed an informatic technique that identifies statistically significant meta-associations between gene expression patterns and transcription factor combinations. Deploying this technique for brain transcriptome profiles from ca. 400 individual bees, we show that diverse determinants of behavior rely on shared combinations of transcription factors. These relationships were revealed only when we considered complex and variable regulatory rules, suggesting that these shared transcription factors are used in distinct ways by different determinants. This regulatory code would have been missed by traditional gene coexpression or cis-regulatory analytic methods. We expect that our meta-analysis tools will be useful for a broad array of problems in systems biology and other fields.


Subject(s)
Behavior, Animal , Meta-Analysis as Topic , Transcription, Genetic , Animals , Bees/physiology , Transcription Factors/metabolism , Transcriptome
14.
Behav Genet ; 42(4): 663-74, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22327626

ABSTRACT

In order to identify genes that are influencing defensive behaviors, we have taken a new approach by dissecting colony-level defensive behavior into individual behavioral measurements using two families containing backcross workers from matings involving European and Africanized bees. We removed the social context from stinging behavior by using a laboratory assay to measure the stinging response of individual bees. A mild shock was given to bees using a constant-current stimulator. The time it took bees to sting in response to this stimulus was recorded. In addition, bees that were seen performing guard behaviors at the hive entrance were collected. We performed QTL mapping in two backcross families with SNP probes within genes and identified two new QTL regions for stinging behavior and another QTL region for guarding behavior. We also identified several candidate genes involved in neural signaling, neural development and muscle development that may be influencing stinging and guarding behaviors. The lack of overlap between these regions and previous defensive behavior QTL underscores the complexity of this behavior and increases our understanding of its genetic architecture.


Subject(s)
Bees/genetics , Behavior, Animal , Insect Bites and Stings/genetics , Quantitative Trait Loci , Reaction Time/genetics , Animals , Chromosome Mapping , Genetic Association Studies , Genetic Linkage , Lod Score , Polymorphism, Single Nucleotide , Social Behavior
15.
PLoS One ; 7(1): e29268, 2012.
Article in English | MEDLINE | ID: mdl-22235278

ABSTRACT

Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments.


Subject(s)
Agriculture , Bees/chemistry , Environmental Exposure/analysis , Pesticide Residues/analysis , Animals , Flowers/chemistry , Pollen/chemistry , Soil/chemistry , Talc/chemistry , Zea mays/chemistry
16.
Proc Natl Acad Sci U S A ; 106(36): 15400-5, 2009 Sep 08.
Article in English | MEDLINE | ID: mdl-19706434

ABSTRACT

A prominent theory states that animal phenotypes arise by evolutionary changes in gene regulation, but the extent to which this theory holds true for behavioral evolution is not known. Because "nature and nurture" are now understood to involve hereditary and environmental influences on gene expression, we studied whether environmental influences on a behavioral phenotype, i.e., aggression, could have evolved into inherited differences via changes in gene expression. Here, with microarray analysis of honey bees, we show that aggression-related genes with inherited patterns of brain expression are also environmentally regulated. There were expression differences in the brain for hundreds of genes between the highly aggressive Africanized honey bee compared with European honey bee (EHB) subspecies. Similar results were obtained for EHB in response to exposure to alarm pheromone (which provokes aggression) and when comparing old and young bees (aggressive tendencies increase with age). There was significant overlap of the gene lists generated from these three microarray experiments. Moreover, there was statistical enrichment of several of the same cis regulatory motifs in promoters of genes on all three gene lists. Aggression shows a remarkably robust brain molecular signature regardless of whether it occurs because of inherited, age-related, or environmental (social) factors. It appears that one element in the evolution of different degrees of aggressive behavior in honey bees involved changes in regulation of genes that mediate the response to alarm pheromone.


Subject(s)
Aggression , Bees/physiology , Behavior, Animal/physiology , Biological Evolution , Gene Expression Regulation , Animals , Brain/metabolism , Enzymes/metabolism , Mexico , Mitochondrial Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Principal Component Analysis , Regulatory Elements, Transcriptional/genetics , Species Specificity
17.
Behav Genet ; 38(5): 531-53, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18661223

ABSTRACT

Invertebrate models have greatly furthered our understanding of ethanol sensitivity and alcohol addiction. The honey bee (Apis mellifera), a widely used behavioral model, is valuable for comparative studies. A quantitative trait locus (QTL) mapping experiment was designed to identify QTL and genes influencing ethanol vapor sensitivity. A backcross mating between ethanol-sensitive and resistant lines resulted in worker offspring that were tested for sensitivity to the sedative effects of alcohol. A linkage map was constructed with over 500 amplified fragment length polymorphism (AFLP) and sequence-tagged site (STS) markers. Four QTL were identified from three linkage groups with log of odds ratio (LOD) scores of 2.28, 2.26, 2.23, and 2.02. DNA from markers within and near QTL were cloned and sequenced, and this data was utilized to integrate our map with the physical honey bee genome. Many candidate genes were identified that influence synaptic transmission, neuronal growth, and detoxification. Others affect lipid synthesis, apoptosis, alcohol metabolism, cAMP signaling, and electron transport. These results are relevant because they present the first search for QTL that affect resistance to acute ethanol exposure in an invertebrate, could be useful for comparative genomic purposes, and lend credence to the use of honey bees as biomedical models of alcohol metabolism and sensitivity.


Subject(s)
Ethanol/pharmacology , Quantitative Trait Loci/genetics , Alcohols/metabolism , Animals , Apoptosis , Bees , Chromosome Mapping , Cyclic AMP/metabolism , Electron Transport , Genetic Linkage , Lipids/chemistry , Lod Score , Odds Ratio , Polymorphism, Genetic , Sequence Tagged Sites
18.
Alcohol ; 42(2): 129-36, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18358992

ABSTRACT

Several candidate genes identified from quantitative trait loci (QTL) for defensive behavior in honey bees (Apis mellifera L.) are homologous to genes known to influence ethanol sensitivity in other organisms. To investigate this possible link between aggression/defense and ethanol sensitivity, assays were developed to evaluate ethanol vapor responses in worker bees from a low-defensive (gentle) colony and a high-defensive colony. Defensive workers exhibited characteristic signs of ethanol-induced sedation significantly faster than gentle workers upon exposure to ethanol vapor. Backcross workers displayed ethanol sensitivity intermediate to the parental defensive and gentle lines, suggesting a genetic basis for the trait. Workers were screened with sequence-tagged site markers linked to three defensive-behavior QTL and their genotypes were tested for associations with ethanol sensitivity. There were no significant associations, indicating that the defensive QTL were not having a pleiotropic effect on ethanol sensitivity. It is possible that gentle-source alleles at these QTL are dominant with respect to sensitivity, one or more of these QTL were not segregating in the backcross family, or unidentified QTL are influencing alcohol sensitivity.


Subject(s)
Aggression/drug effects , Bees/drug effects , Ethanol/pharmacology , Animals , Bees/genetics , Ethanol/chemistry , Genotype , Quantitative Trait Loci , Species Specificity , Volatilization
19.
Behav Genet ; 38(1): 93-100, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17975725

ABSTRACT

This study was conducted to analyze the stinging response thresholds of individual European and Africanized worker honeybees (Apis mellifera L.) to electrical stimulation. Newly emerged workers were identified, and either were placed into an incubator, into their natal colonies, or cross-fostered in common colonies of European or Africanized ancestry. Nest and guard bees of each type were collected and exposed to an electric stimulus of 0.5 mA, and the time they took to sting a leather substrate was recorded. Africanized bees consistently had significant lower thresholds of defensive response than European bees across all of the environments tested. Guards were faster to sting than nest bees only for the Africanized genotype, suggesting that alleles of African origin have pleiotropic effects on guarding and stinging. This is the first study that shows that single individuals specialized in guarding also may have a lower response threshold for stinging. Environmental effects were also evident. In all cases, bees responded faster to the electrical stimulation after being kept in environments other than their natal nest. Moreover, significant genotype by environment and genotype by task specialization interactions were found. Our results fit a model of division of labor based on differences in response thresholds to stimuli among workers of different genotypes and task groups that result in non-additive effects on colony behavior.


Subject(s)
Bees/physiology , Nesting Behavior , Africa , Animals , Bees/classification , Bees/genetics , Ecosystem , Electrophysiology , Europe , Female , Genotype , Maternal Behavior , Social Behavior
20.
Naturwissenschaften ; 94(4): 247-67, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17171388

ABSTRACT

The honeybee has been the most important insect species for study of social behavior. The recently released draft genomic sequence for the bee will accelerate honeybee behavioral genetics. Although we lack sufficient tools to manipulate this genome easily, quantitative trait loci (QTLs) that influence natural variation in behavior have been identified and tested for their effects on correlated behavioral traits. We review what is known about the genetics and physiology of two behavioral traits in honeybees, foraging specialization (pollen versus nectar), and defensive behavior, and present evidence that map-based cloning of genes is more feasible in the bee than in other metazoans. We also present bioinformatic analyses of candidate genes within QTL confidence intervals (CIs). The high recombination rate of the bee made it possible to narrow the search to regions containing only 17-61 predicted peptides for each QTL, although CIs covered large genetic distances. Knowledge of correlated behavioral traits, comparative bioinformatics, and expression assays facilitated evaluation of candidate genes. An overrepresentation of genes involved in ovarian development and insulin-like signaling components within pollen foraging QTL regions suggests that an ancestral reproductive gene network was co-opted during the evolution of foraging specialization. The major QTL influencing defensive/aggressive behavior contains orthologs of genes involved in central nervous system activity and neurogenesis. Candidates at the other two defensive-behavior QTLs include modulators of sensory signaling (Am5HT(7) serotonin receptor, AmArr4 arrestin, and GABA-B-R1 receptor). These studies are the first step in linking natural variation in honeybee social behavior to the identification of underlying genes.


Subject(s)
Bees/genetics , Feeding Behavior/physiology , Genetics, Behavioral , Genome , Nesting Behavior/physiology , Animals , Bees/physiology , Chromosome Mapping , Cloning, Molecular , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...