Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 43(2): 690-700, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25602670

ABSTRACT

Manure from beef cattle feedyards is a valuable source of nutrients and assists with maintaining soil quality. However, humification and decomposition processes occurring during feedyard manure's on-farm life cycle influence the forms, concentrations, and availability of carbon (C) and nutrients such as nitrogen (N) and phosphorus (P). Improved understanding of manure organic matter (OM) chemistry will provide better estimates of potential fertilizer value of manure from different feedyard sources (e.g., manure accumulated in pens, stockpiled manure after pen scraping) and in settling basin and retention pond sediments. This will also assist with identifying factors related to nutrient loss and environmental degradation via volatilization of ammonia and nitrous oxide and nitrate leaching. We used Fourier-transform infrared (FTIR) and ultraviolet-visible (UV-vis) spectroscopies to characterize structural and functional properties of OM and water-extractable OM (WEOM) from different sources (surface manure, manure pack, settling basin, retention pond) on a typical commercial beef feedyard in the Texas Panhandle. Results showed that as beef manure completes its on-farm life cycle, concentrations of dissolved organic C and N decrease up to 98 and 95%, respectively. The UV-vis analysis of WEOM indicated large differences in molecular weight, lignin content, and proportion of humified OM between manures from different sources. The FTIR spectra of OM and WEOM indicate preferential decomposition of fats, lipids, and proteins over aromatic polysaccharides such as lignin. Further work is warranted to evaluate how application of feedyard manure from different sources influences soil metabolic functioning and fertility.

2.
J Agric Food Chem ; 55(6): 2121-8, 2007 Mar 21.
Article in English | MEDLINE | ID: mdl-17305362

ABSTRACT

Fresh and decomposed dissolved organic matter (DOM) derived from 13 plant biomass and animal manure sources was characterized using multidimensional fluorescence spectroscopy with parallel factor analysis (PARAFAC), high-performance size-exclusion chromatography, and UV-vis spectroscopy. The PARAFAC analysis modeled seven fluorescence components: tryptophan-like, tyrosine-like, and five humic substance-like components. For most of the plant-derived DOM solutions, decomposition significantly affected the concentration of three humic substance-like-associated components, increasing two and decreasing one. The effect of decomposition upon DOM derived from animal manures was dependent on the manure source. For a majority of the DOM extracts, the ratio of fluorescence intensity to absorptivity at 254 nm increased following decomposition, indicating that fluorescing DOM compounds were generally more resistant to biodegradation than nonfluorescing UV-absorbing compounds. Molar absorptivity, humification index (HIX), and apparent molecular weight (MWAP) increased by 38.0, 38.8, and 370%, respectively, following decomposition. Spearman correlation analysis showed a strong positive relationship between the humic substance-like components and the DOM MWAP, absorptivity, and HIX. The results of this study support the use of multidimensional fluorescence spectroscopy with PARAFAC as a method to monitor the decomposition of carbon-rich soil amendments such as crop residues, green manures, and animal manures.


Subject(s)
Biomass , Manure/analysis , Plants/chemistry , Spectrometry, Fluorescence/methods , Animals , Chromatography, Gel , Humic Substances/analysis , Soil/analysis , Tryptophan/analysis , Tyrosine/analysis
3.
J Environ Qual ; 36(1): 135-43, 2007.
Article in English | MEDLINE | ID: mdl-17215221

ABSTRACT

Sorption of dissolved organic matter (DOM) plays an important role in maintaining the fertility and quality of soils in agricultural ecosystems. Few studies have examined the effects of decomposition on DOM sorption and chemical characteristics. This study investigated the sorption to goethite (alpha-FeOOH) of fresh and decomposed hydrophilic (HPL) and hydrophobic (HPB) DOM fractions extracted from the shoots and roots of crimson clover (Trifolium incarnatum L.), corn (Zea mays L.), soybean [Glycine max (L.) Merr.], hairy vetch (Vicia villosa L.), and dairy and poultry manures. Sorption was positively related to apparent molecular weight (MWAP), aromaticity as measured by absorptivity at 280 nm, and phenolic acid content. A 10-d laboratory microbial decomposition of the source organic matter generally increased the sorption of the extracted DOM onto goethite. The decomposition effect on sorption was greater for the HPL fractions than for the HPB fractions. There was a decrease in the MWAP values of the DOM samples following sorption to goethite. In many cases the reduction in MWAP was large, indicating a strong preference by goethite for the higher MWAP DOM fractions. The results of this laboratory-based research demonstrate that microbial processes affect the chemical characteristics of DOM which may affect the distribution of soil organic C pools.


Subject(s)
Iron Compounds/chemistry , Manure/analysis , Plants/chemistry , Acids/chemistry , Adsorption , Hydrogen-Ion Concentration , Minerals , Molecular Weight , Phenols/chemistry
4.
J Colloid Interface Sci ; 304(1): 271-6, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17010987

ABSTRACT

Soil organic matter is involved in many ecosystem processes, such as nutrient supply, metal solubilization, and carbon sequestration. This study examined the ability of multidimensional fluorescence spectroscopy and parallel factor analysis (PARAFAC) to provide detailed chemical information on the preferential sorption of higher-molecular-weight components of natural organic matter onto mineral surfaces. Dissolved organic matter (DOM) from soil organic horizons and tree leaf tissues was obtained using water extracts. The suite of fluorescence spectra was modeled with PARAFAC and it was revealed that the DOM extracts contained five fluorescing components: tryptophan-like (peak location at excitation <255 nm:emission 342 nm), tyrosine-like (276 nm:312 nm), and three humic-substance-like components (<255 nm:456 nm, 309 nm:426 nm, <255 nm:401 nm). In general, adsorption onto goethite and gibbsite increased with increasing DOM molecular weight and humification. PARAFAC analysis of the pre- and post-sorption DOM indicated that the ordering of sorption extent was humic-like components (average 91% sorption) > tryptophan-like components (52% sorption) > tyrosine-like components (29% sorption). This differential sorption of the modeled DOM components in both the soil organic horizon and leaf tissue extracts led to the fractionation of DOM. The results of this study demonstrate that multidimensional fluorescence spectroscopy combined with PARAFAC can quantitatively describe the chemical fractionation process due to the interaction of DOM with mineral surfaces.


Subject(s)
Organic Chemicals/analysis , Spectrometry, Fluorescence/methods , Adsorption , Factor Analysis, Statistical , Minerals/chemistry , Molecular Weight , Plant Leaves/chemistry , Sensitivity and Specificity , Soil/analysis , Surface Properties , Trees/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...