Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
ACS Appl Bio Mater ; 7(5): 2872-2886, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38721671

ABSTRACT

Antimicrobial coatings provide protection against microbes colonization on surfaces. This can prevent the stabilization and proliferation of microorganisms. The ever-increasing levels of microbial resistance to antimicrobials are urging the development of alternative types of compounds that are potent across broad spectra of microorganisms and target different pathways. This will help to slow down the development of resistance and ideally halt it. The development of composite antimicrobial coatings (CACs) that can host and protect various antimicrobial agents and release them on demand is an approach to address this urgent need. In this work, new CACs based on microsized hybrids of calcium carbonate (CaCO3) and silver nanoparticles (AgNPs) were designed using a drop-casting technique. Polyvinylpyrrolidone and mucin were used as additives. The CaCO3/AgNPs hybrids contributed to endowing colloidal stability to the AgNPs and controlling their release, thereby ensuring the antibacterial activity of the coatings. Moreover, the additives PVP and mucin served as a matrix to (i) control the distribution of the hybrids, (ii) ensure mechanical integrity, and (iii) prevent the undesired release of AgNPs. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques were used to characterize the 15 µm thick CAC. The antibacterial activity was determined against Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa, three bacteria responsible for many healthcare infections. Antibacterial performance of the hybrids was demonstrated at concentrations between 15 and 30 µg/cm2. Unloaded CaCO3 also presented bactericidal properties against MRSA. In vitro cytotoxicity tests demonstrated that the hybrids at bactericidal concentrations did not affect human dermal fibroblasts and human mesenchymal stem cell viability. In conclusion, this work presents a simple approach for the design and testing of advanced multicomponent and functional antimicrobial coatings that can protect active agents and release them on demand.


Subject(s)
Anti-Bacterial Agents , Calcium Carbonate , Materials Testing , Metal Nanoparticles , Microbial Sensitivity Tests , Particle Size , Silver , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacology , Silver/chemistry , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Metal Nanoparticles/chemistry , Humans , Cell Survival/drug effects , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Escherichia coli/drug effects , Surface Properties , Staphylococcus aureus/drug effects
2.
Sci Rep ; 14(1): 11065, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744933

ABSTRACT

The development of stretchable electronic devices is a critical area of research for wearable electronics, particularly electronic textiles (e-textiles), where electronic devices embedded in clothing need to stretch and bend with the body. While stretchable electronics technologies exist, none have been widely adopted. This work presents a novel and potentially transformative approach to stretchable electronics using a ubiquitous structure: the helix. A strip of flexible circuitry ('e-strip') is twisted to form a helical ribbon, transforming it from flexible to stretchable. A stretchable core-in this case rubber cord-supports the structure, preventing damage from buckling. Existing helical electronics have only extended to stretchable interconnects between circuit modules, and individual components such as printed helical transistors. Fully stretchable circuits have, until now, only been produced in planar form: flat circuits, either using curved geometry to enable them to stretch, or using inherently stretchable elastomer substrates. Helical e-strips can bend along multiple axes, and repeatedly stretch between 30 and 50%, depending on core material and diameter. LED and temperature sensing helical e-strips are demonstrated, along with design rules for helical e-strip fabrication. Widely available materials and standard fabrication processes were prioritized to maximize scalability and accessibility.

3.
Exp Physiol ; 109(3): 380-392, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38063067

ABSTRACT

Heavy training has been reported to be immunosuppressive in athletes and lead to blunted cortisol responses to exercise. Cortisol elevates the number of dendritic cells (DCs), key antigen-presenting cells that interact with T cells to initiate an immune response. Reproducible cortisol responses to a 30-min cycle test have been identified but were based on percentage of work rate maximum. To ensure physiological consistency, submaximal anchors, that is, ventilatory threshold (VT1 ) should prescribe intensity. This study aims to assess the reproducibility of the DC and T cell responses to an adapted stress test to assess its usefulness in assessing DC dysfunction with intensified training. Twelve males cycled for 1 min at 20% below VT1 and 4 min at 50% between VT1 and V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}\max }$ , for 30 min (20/50), with blood samples pre-, post- and 30 min post-exercise. This was repeated twice, 2-7 days apart. Flow cytometry assessed total DCs, plasmacytoid DCs, myeloid DCs, total T cells, T helper cells and T cytotoxic cells. No significant trial or interaction effects were found for any variable. A significant main effect of time for all variables was found; immune cells increased from pre- to post-exercise and decreased to baseline 30 min post-exercise, apart from plasmacytoid DCs, which remained elevated 30 min post-exercise. Intraclass correlation coefficients showed overall good-to-excellent reliability for all immune cells, with smallest real difference and Bland-Altman analysis verifying high reproducibility between trials. These results suggest that the 20/50 exercise test induces reproducible DC and T cell count changes, which, implemented before and after a period of intensified training, may highlight the negative states of overtraining.


Subject(s)
Hydrocortisone , T-Lymphocytes , Male , Humans , Reproducibility of Results , Dendritic Cells , Cell Count
4.
Cells ; 12(2)2023 01 13.
Article in English | MEDLINE | ID: mdl-36672248

ABSTRACT

The transition areas between different tissues, known as tissue interfaces, have limited ability to regenerate after damage, which can lead to incomplete healing. Previous studies focussed on single interfaces, most commonly bone-tendon and bone-cartilage interfaces. Herein, we develop a 3D in vitro model to study the regeneration of the bone-tendon-muscle interface. The 3D model was prepared from collagen and agarose, with different concentrations of hydroxyapatite to graduate the tissues from bones to muscles, resulting in a stiffness gradient. This graduated structure was fabricated using indirect 3D printing to provide biologically relevant surface topographies. MG-63, human dermal fibroblasts, and Sket.4U cells were found suitable cell models for bones, tendons, and muscles, respectively. The biphasic and triphasic hydrogels composing the 3D model were shown to be suitable for cell growth. Cells were co-cultured on the 3D model for over 21 days before assessing cell proliferation, metabolic activity, viability, cytotoxicity, tissue-specific markers, and matrix deposition to determine interface formations. The studies were conducted in a newly developed growth chamber that allowed cell communication while the cell culture media was compartmentalised. The 3D model promoted cell viability, tissue-specific marker expression, and new matrix deposition over 21 days, thereby showing promise for the development of new interfaces.


Subject(s)
Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Tendons , Bone and Bones , Cartilage , Muscles
5.
PLoS One ; 17(12): e0278049, 2022.
Article in English | MEDLINE | ID: mdl-36454864

ABSTRACT

BACKGROUND: Biopurification has been used to disclose an evolutionarily conserved inhibitory reproductive hormone involved in tissue mass determination. A (rat) bioassay-guided physicochemical fractionation using ovine materials yielded via Edman degradation a 14-residue amino acid (aa) sequence. As a 14mer synthetic peptide (EPL001) this displayed antiproliferative and reproduction-modulating activity, while representing only a part of the native polypeptide. Even more unexpectedly, a scrambled-sequence control peptide (EPL030) did likewise. METHODS: Reproduction has been investigated in the nematode Steinernema siamkayai, using a fermentation system supplemented with different concentrations of exogenous hexapeptides. Peptide structure-activity relationships have also been studied using prostate cancer and other mammalian cells in vitro, with peptides in solution or immobilized, and via the use of mammalian assays in vivo and through molecular modelling. RESULTS: Reproduction increased (x3) in the entomopathogenic nematode Steinernema siamkayai after exposure to one synthetic peptide (IEPVFT), while fecundity was reduced (x0.5) after exposure to another (KLKMNG), both effects being dose-dependent. These hexamers are opposite ends of the synthetic peptide KLKMNGKNIEPVFT (EPL030). Bioactivity is unexpected as EPL030 is a control compound, based on a scrambled sequence of the test peptide MKPLTGKVKEFNNI (EPL001). EPL030 and EPL001 are both bioinformatically obscure, having no convincing matches to aa sequences in the protein databases. EPL001 has antiproliferative effects on human prostate cancer cells and rat bone marrow cells in vitro. Intracerebroventricular infusion of EPL001 in sheep was associated with elevated growth hormone in peripheral blood and reduced prolactin. The highly dissimilar EPL001 and EPL030 nonetheless have the foregoing biological effects in common in mammalian systems, while being divergently pro- and anti-fecundity respectively in the nematode Caenorhabditis elegans. Peptides up to a 20mer have also been shown to inhibit the proliferation of human cancer and other mammalian cells in vitro, with reproductive upregulation demonstrated previously in fish and frogs, as well as nematodes. EPL001 encodes the sheep neuroendocrine prohormone secretogranin II (sSgII), as deduced on the basis of immunoprecipitation using an anti-EPL001 antibody, with bespoke bioinformatics. Six sSgII residues are key to EPL001's bioactivity: MKPLTGKVKEFNNI. A stereospecific bimodular tri-residue signature is described involving simultaneous accessibility for binding of the side chains of two specific trios of amino acids, MKP & VFN. An evolutionarily conserved receptor is conceptualised having dimeric binding sites, each with ligand-matching bimodular stereocentres. The bioactivity of the 14mer control peptide EPL030 and its hexapeptide progeny is due to the fortuitous assembly of subsets of the novel hormonal motif, MKPVFN, a default reproductive and tissue-building OFF signal.


Subject(s)
Prostatic Neoplasms , Rhabditida , Humans , Male , Animals , Sheep , Rats , Reproduction , Mammals , Caenorhabditis elegans , Hormones
6.
Sci Rep ; 12(1): 7972, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562402

ABSTRACT

This article focuses on the design and fabrication of flexible textile-based protein sensors to be embedded in wound dressings. Chronic wounds require continuous monitoring to prevent further complications and to determine the best course of treatment in the case of infection. As proteins are essential for the progression of wound healing, they can be used as an indicator of wound status. Through measuring protein concentrations, the sensor can assess and monitor the wound condition continuously as a function of time. The protein sensor consists of electrodes that are directly screen printed using both silver and carbon composite inks on polyester nonwoven fabric which was deliberately selected as this is one of the common backing fabric types currently used in wound dressings. These sensors were experimentally evaluated and compared to each other by using albumin protein solution of pH 7. A comprehensive set of cyclic voltammetry measurements was used to determine the optimal sensor design the measurement of protein in solution. As a result, the best sensor design is comprised of silver conductive tracks but a carbon layer as the working and counter electrodes at the interface zone. This design prevents the formation of silver dioxide and protects the sensor from rapid decay, which allows for the recording of consecutive measurements using the same sensor. The chosen printed protein sensor was able to detect bovine serum albumin at concentrations ranging from 30 to 0.3 mg/mL with a sensitivity of [Formula: see text]A/M. Further testing was performed to assess the sensor's ability to identify BSA from other interferential substances usually present in wound fluids and the results show that it can be distinguishable.


Subject(s)
Silver , Textiles , Bandages , Carbon , Wound Healing
7.
BMC Res Notes ; 14(1): 469, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34952633

ABSTRACT

OBJECTIVE: The use of benchtop metabolic profiling technology based on nuclear magnetic resonance (NMR) was evaluated in a small cohort of cats with a view to applying this as a viable and rapid metabolic tool to support clinical decision making. RESULTS: Urinary metabolites were analysed from four subjects consisting of two healthy controls and two chronic kidney disease (CKD) IRIS stage 2 cases. The study identified 15 metabolites in cats with CKD that were different from the controls. Among them were acetate, creatinine, citrate, taurine, glycine, serine and threonine. Benchtop NMR technology is capable of distinguishing between chronic kidney disease case and control samples in a pilot feline cohort based on metabolic profile. We offer perspectives on the further development of this pilot work and the potential of the technology, when combined with sample databases and computational intelligence techniques to offer a clinical decision support tool not only for cases of renal disease but other metabolic conditions in the future.


Subject(s)
Metabolomics , Renal Insufficiency, Chronic , Animals , Cats , Creatinine , Magnetic Resonance Spectroscopy , Metabolome
8.
Womens Health (Lond) ; 17: 17455065211058553, 2021.
Article in English | MEDLINE | ID: mdl-34798792

ABSTRACT

OBJECTIVES: Menstrual cups come in a range of shapes, sizes, and firmnesses, but unlike tampons are not categorized in any way. With these factors having an impact on product leaks and comfort, as well as being linked to illness and injury, women need the same level of transparency when purchasing a menstrual cup. The comparison of physical and mechanical properties of menstrual cups will be the first step to achieve this. METHODS: In October 2020, 14 popular and highly rated menstrual cups underwent quantitative comparison in laboratory settings (the United Kingdom), and they were compared in terms of their dimensions, volume, and compressive strength (firmness) using the Instron Universal Testing System. The overall designs were compared including shape, material, and features. RESULTS: Although all the products in this comparison were marketed to women below 30 years of age having never given birth, total volume varied from 18.88 mL to 38.14 mL, and compressive load to compress the menstrual cup 50% (±0.5%) maximum diameter varied from 3.39 N to 13.92 N. CONCLUSIONS: Women are not sufficiently informed when choosing a menstrual cup. With no correlation between menstrual cup size, shape, and its volume, or material, shape, and its firmness, consumers cannot estimate which menstrual cup might be most suitable, and incorrect choice could cause injury. Transparency is needed across menstrual cup brands. With this and further regulation, women will make an informed decision to choose the correct menstrual cup and minimize injury. This work recommends firmness categories, ranging from 'very soft' to 'very firm' as a first step.


Subject(s)
Menstrual Hygiene Products , Menstruation , Female , Humans
9.
Mol Cell Biochem ; 476(11): 4133-4137, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34312783

ABSTRACT

Chronic kidney disease (CKD) is a renal dysfunction that can lead to high rates of mortality and morbidity, particularly when coupled with late diagnosis. CKD has become a major health problem due to its challenging detection at early stages when clear symptoms are yet to be presented. Thus, CKD is likely to be identified when the substantive conditions of the disease are manifest. In order to address the development of the disease and provide necessary treatments at the initial stage, the investigation of new biomarkers and metabolites associated with early detection of CKD are needed. Identified metabolites could be used to confirm the presence of the disease, obtain information on its mechanism and facilitate the development of novel pharmaceutical treatments. Such metabolites may be detected from biofluids and tissues using a range of analytical techniques. There are a number of metabolites that have been identified by mass spectrometry at high sensitivities, whilst the detection of metabolites directly from biofluids using NMR could present a more rapid way to expand our understanding of this disease. This review is focused on NMR-based metabolomics associated with CKD in humans and animals.


Subject(s)
One Health , Renal Insufficiency, Chronic/diagnosis , Animals , Biomarkers/analysis , Early Diagnosis , Humans , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Metabolomics/methods , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/therapy
10.
J Biomed Mater Res B Appl Biomater ; 109(11): 1713-1723, 2021 11.
Article in English | MEDLINE | ID: mdl-33749114

ABSTRACT

Enriching a biomaterial surface with specific chemical groups has previously been considered for producing surfaces that influence cell response. Silane layer deposition has previously been shown to control mesenchymal stem cell adhesion and differentiation. However, it has not been used to investigate neuronal or Schwann cell responses in vitro to date. We report on the deposition of aminosilane groups for peripheral neurons and Schwann cells studying two chain lengths: (a) 3-aminopropyl triethoxysilane (short chain-SC) and (b) 11-aminoundecyltriethoxysilane (long chain-LC) by coating glass substrates. Surfaces were characterised by water contact angle, AFM and XPS. LC-NH2 was produced reproducibly as a homogenous surface with controlled nanotopography. Primary neuron and NG108-15 neuronal cell differentiation and primary Schwann cell responses were investigated in vitro by S100ß, p75, and GFAP antigen expression. Both amine silane surface supported neuronal and Schwann cell growth; however, neuronal differentiation was greater on LC aminosilanes versus SC. Thus, we report that silane surfaces with an optimal chain length may have potential in peripheral nerve repair for the modification and improvement of nerve guidance devices.


Subject(s)
Cell Culture Techniques , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Neurons/metabolism , Schwann Cells/metabolism , Animals , Cell Line, Tumor , Cell Survival , Mesenchymal Stem Cells/cytology , Neurons/cytology , Rats , Schwann Cells/cytology , Surface Properties
11.
Tissue Eng Part B Rev ; 27(6): 548-571, 2021 12.
Article in English | MEDLINE | ID: mdl-33176607

ABSTRACT

The regeneration of the musculoskeletal system has been widely investigated. There is now detailed knowledge about the organs composing this system. Research has also investigated the zones between individual tissues where physical, mechanical, and biochemical properties transition. However, the understanding of the regeneration of musculoskeletal interfaces is still lacking behind. Numerous disorders and injuries can degrade or damage tissue interfaces. Their inability to regenerate can delay the tissue repair and regeneration process, leading to graft instability, high morbidity, and pain. Moreover, the knowledge of the mechanism of tissue interface development is not complete. This review presents an overview of the most recent approaches of the regeneration of musculoskeletal interfaces, including the latest in vitro, preclinical, and clinical studies. Impact statement Interfaces between soft and hard tissues are ubiquitous within the body. These transition zones are crucial for joint motion, stabilisation and load transfer between tissues, but do not seem to regenerate well after injury or deterioration. The knowledge about their biology is vast, but little is known about their development. Various musculoskeletal disorders in combination with risk factors including aging and unhealthy lifestyle, can lead to local imbalances, misalignments, inflammation, pain and restricted mobility. Our manuscript reviews the current approaches taken to promote the regeneration of musculoskeletal interfaces through in vitro, pre-clinical and clinical studies.


Subject(s)
Musculoskeletal Diseases , Musculoskeletal System , Humans , Musculoskeletal Diseases/therapy , Regeneration , Tissue Engineering , Wound Healing
12.
J Exp Orthop ; 6(1): 40, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31659540

ABSTRACT

BACKGROUND: Porous tantalum is currently used in orthopaedic surgery for a variety of indications including soft tissue re-attachment. However, the clinical results have been variable and a previous laboratory study has suggested that tantalum may actually inhibit chick tendon fibroblasts. The influence of tantalum on human cell-types involved in soft tissue re-attachment has not been defined. METHODS: Human fibroblasts, human osteoblasts and human mesenchymal stem cells were plated on glass cover slips, half of which were coated with tantalum. Cell numbers were assessed at 1, 2, 7 and 14 days using Cyquant® assay. Cell adhesion and morphology were assessed using light microscopy at 7, 14 and 28 days. To reduce the effect of an expected rate of error, n = 4 was utilised for each cell type and the experiment was repeated twice. RESULTS: Statistically similar numbers of human osteoblasts and human mesenchymal stem cells were present at 14 days on tantalum-coated and uncoated glass cover slips, revealing no inhibitory effect on cell proliferation. More than double the number of human fibroblasts was seen on tantalum-coated cover slips at that time point (compared to controls), which was statistically significant (p < 0.0001). Morphological assessment revealed normal cell spreading and adhesion on both substrates at all time points. CONCLUSIONS: In vitro study demonstrates that Tantalum causes a significant increase in the proliferation of human fibroblasts with no quantifiable negative effects seen on fibroblast behaviour after 28 days culture. Furthermore, tantalum does not exert any inhibitory effects on the proliferation or behaviour of human osteoblasts or human mesenchymal stem cells. Tantalum could be an appropriate biomaterial for use in situations where soft tissue requires direct reattachment to implants and may stimulate soft tissue healing.

13.
Biogerontology ; 19(6): 497-517, 2018 12.
Article in English | MEDLINE | ID: mdl-30374678

ABSTRACT

Human adult stem cell research is a highly prolific area in modern tissue engineering as these cells have significant potential to provide future cellular therapies for the world's increasingly aged population. Cellular therapies require a smart biomaterial to deliver and localise the cell population; protecting and guiding the stem cells toward predetermined lineage-specific pathways. The cells, in turn, can provide protection to biomaterials and increase its longevity. The right combination of stem cells and biomaterials can significantly increase the therapeutic efficacy. Adult stem cells are utilised to target many changes that negatively impact tissue functions with age. Understanding the underlying mechanisms that lead to changes brought about by the ageing process is imperative as ageing leads to many detrimental effects on stem cell activation, maintenance and differentiation. The circadian clock is an evolutionarily conserved timing mechanism that coordinates physiology, metabolism and behavior with the 24 h solar day to provide temporal tissue homeostasis with the external environment. Circadian rhythms deteriorate with age at both the behavioural and molecular levels, leading to age-associated changes in downstream rhythmic tissue physiology in humans and rodent models. In this review, we highlight recent advances in our knowledge of the role of circadian clocks in adult stem cell maintenance, driven by both cell-autonomous and tissue-specific factors, and the mechanisms by which they co-opt various cellular signaling pathways to impose temporal control on stem cell function. Future research investigating pharmacological and lifestyle interventions by which circadian rhythms within adult stem niches can be manipulated will provide avenues for temporally guided cellular therapies and smart biomaterials to ameliorate age-related tissue deterioration and reduce the burden of chronic disease.


Subject(s)
Adult Stem Cells/physiology , Circadian Clocks/physiology , Regeneration , Animals , Cell Differentiation , Cell Proliferation , Cell Self Renewal , Humans
14.
ACS Appl Mater Interfaces ; 10(36): 30163-30171, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30118196

ABSTRACT

Closed-loop artificial pancreas systems have recently been proposed as a solution for treating stage I diabetes by reproducing the function of the pancreas. However, there are many unresolved issues associated with their development, including monitoring and controlling oxygen, immune responses, and the optimization of glucose, all of which need to be monitored and controlled to produce an efficient and viable artificial organ that can become integrated in the patient and maintain homeostasis. This research focused on monitoring the oxygen concentration, specifically achieving this kinetically as the oxygen gradient in an artificial pancreas made of alginate spheres containing islet cells. Functional nanoparticles (NPs) for measuring the oxygen gradient in different hydrogel cellular environments using fluorescence-based (F) microscopy were developed and tested. By the ester bond, a linker Pluronic F127 was conjugated with a carboxylic acid-modified polystyrene NP (510 nm). A hydrophilic/hydrophobic interaction between the commercially available oxygen-sensitive fluorophore and F127 results in fluorescence-based nano-oxygen particles (FNOPs). The in-house synthesized FNOP was calibrated inside electrosprayed alginate-filled hydrogels and demonstrated a good broad dynamic range (2.73-22.23) mg/L as well as a resolution of -0.01 mg/L with an accuracy of ±4%. The calibrated FNOP was utilized for continuous measuring of the oxygen concentration gradient for cell lines RIN-m5F/HeLa for more than 5 days in alginate hydrogel spheres in vitro.


Subject(s)
Cell Physiological Phenomena , Cytological Techniques/methods , Oxygen/chemistry , Fluorescence , Humans , Hydrogels/chemistry , Microscopy, Fluorescence , Pancreas, Artificial
15.
J Vis Exp ; (136)2018 06 12.
Article in English | MEDLINE | ID: mdl-29985313

ABSTRACT

Scanning probe microscopy has enabled the creation of a variety of methods for the constructive ('additive') top-down fabrication of nanometer-scale features. Historically, a major drawback of scanning probe lithography has been the intrinsically low throughput of single probe systems. This has been tackled by the use of arrays of multiple probes to enable increased nanolithography throughput. In order to implement such parallelized nanolithography, the accurate alignment of probe arrays with the substrate surface is vital, so that all probes make contact with the surface simultaneously when lithographic patterning begins. This protocol describes the utilization of polymer pen lithography to produce nanometer-scale features over centimeter-sized areas, facilitated by the use of an algorithm for the rapid, accurate, and automated alignment of probe arrays. Here, nanolithography of thiols on gold substrates demonstrates the generation of features with high uniformity. These patterns are then functionalized with fibronectin for use in the context of surface-directed cell morphology studies.


Subject(s)
Microscopy, Scanning Probe/methods , Nanotechnology/methods , Cell Culture Techniques
16.
J Biomed Mater Res A ; 106(7): 1862-1877, 2018 07.
Article in English | MEDLINE | ID: mdl-29493081

ABSTRACT

Silane modification has been proposed as a powerful biomaterial surface modification tool. This is the first comprehensive investigation into the effect of silane chain length on the resultant properties of -NH2 silane monolayers and the associated osteoinductive properties of the surface. A range of -NH2 presenting silanes, chain length 3-11, were introduced to glass coverslips and characterized using water contact angles, atomic force microscopy, X-ray photoelectron spectroscopy, and Ninhydrin assays. The ability of the variation in chain length to form a homogenous layer across the entirety of the surfaces was also assessed. The osteoinductive potential of the resultant surfaces was evaluated by real-time polymerase chain reaction, immunocytochemistry, and von Kossa staining. Control of surface chemistry and topography was directly associated with changes in chain length. This resulted in the identification of a specific, chain length 11 (CL11) which significantly increased the osteoinductive properties of the modified materials. Only CL11 surfaces had a highly regular nano-topography/roughness which resulted in the formation of an appetite-like layer on the surface that induced a significantly enhanced osteoinductive response (increased expression of osteocalcin, CBFA1, sclerostin, and the production of a calcified matrix) across the entirety of the surface. © 2018 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1862-1877, 2018.


Subject(s)
Amines/pharmacology , Mesenchymal Stem Cells/cytology , Nanoparticles/chemistry , Osseointegration/drug effects , Adsorption , Cell Proliferation/drug effects , Cells, Cultured , Fibronectins/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Microscopy, Atomic Force , Phosphates/chemistry , Photoelectron Spectroscopy , Surface Properties
17.
J Orthop Res ; 2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29521434

ABSTRACT

The joint synovium consists of a heterogeneous cell population, chiefly comprised of macrophages, and fibroblast-like synoviocytes (FLS). An inter-species co-culture model was developed to examine interactions between these cells. Equine FLS and the canine macrophage line DH82 were differentially labeled using fluorescent markers and results from direct co-culture compared with those from both indirect co-culture, and conditioned media experiments. The transcript expression of IL-1ß, IL-6, ADAMTS4, and ADAMTS5 in each cell type were determined using species-specific qPCR assays. Lipopolysaccharide stimulation of EFLS rapidly increased IL-1ß, IL-6, ADAMTS4, and ADAMTS5 mRNAs. The induction of ADAMTS5 was significantly reduced when equine FLS were cultured with DH82 cells directly or indirectly. Exposure of equine FLS to denatured conditioned media also significantly reduced ADAMTS5 induction. DH82 cells increased interleukin-1ß expression substantially following LPS stimulation. However, knockdown of interleukin-1ß in DH82 cells, or inhibition of NF-κB in equine FLS prior to co-culture did not change the inhibitory effect on equine FLS ADAMTS5 gene expression. This work indicates that macrophages can influence FLS gene expression through a soluble mediator, and modulate the expression of an enzyme critical in osteoarthritis pathology during inflammatory stimulation. © 2018 The Authors. Journal of Orthopaedic Research® Published by WileyPeriodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 9999:1-8, 2018.

18.
ACS Appl Mater Interfaces ; 10(9): 7765-7776, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29430919

ABSTRACT

As cell function and phenotype can be directed by the mechanical characteristics of the surrounding matrix, hydrogels have become important platforms for cell culture systems, with properties that can be tuned by external stimuli, such as divalent cations, enzymatic treatment, and pH. However, many of these stimuli can directly affect cell behavior, making it difficult to distinguish purely mechanical signaling events. This study reports on the development of a hydrogel that incorporates photoswitchable cross-linkers, which can reversibly alter their stiffness upon irradiation with the appropriate wavelength of light. Furthermore, this study reports the response of bone-marrow-derived mesenchymal stem cells (MSCs) on these hydrogels that were stiffened systematically by irradiation with blue light. The substrates were shown to be noncytotoxic, and crucially MSCs were not affected by blue-light exposure. Time-resolved analysis of cell morphology showed characteristic cell spreading and increased aspect ratios in response to greater substrate stiffness. This hydrogel provides a platform to study mechanosignaling in cells responding to dynamic changes in stiffness, offering a new way to study mechanotransduction signaling pathways and biological processes, with implicit changes to tissue mechanics, such as development, ageing, and fibrosis.


Subject(s)
Hydrogels/chemistry , Cells, Cultured , Extracellular Matrix , Mechanotransduction, Cellular , Mesenchymal Stem Cells
19.
Stem Cells Int ; 2017: 2057168, 2017.
Article in English | MEDLINE | ID: mdl-29201058

ABSTRACT

Optimising cell/tissue constructs so that they can be successfully accepted and integrated within a host body is essential in modern tissue engineering. To do this, adult stem cells are frequently utilised, but there are many aspects of their environment in vivo that are not completely understood. There is evidence to suggest that circadian rhythms and daily circadian temporal cues have substantial effects on stem cell activation, cell cycle, and differentiation. It was hypothesised that the circadian rhythm in human adult stem cells differs depending on the source of tissue and that different entraining signals exert differential effects depending on the anatomical source. Dexamethasone and rhythmic mechanical stretch were used to synchronise stem cells derived from the bone marrow, tooth dental pulp, and abdominal subcutaneous adipose tissue, and it was experimentally evidenced that these different stem cells differed in their circadian clock properties in response to different synchronisation mechanisms. The more primitive dental pulp-derived stem cells did not respond as well to the chemical synchronisation but showed temporal clock gene oscillations following rhythmic mechanical stretch, suggesting that incorporating temporal circadian information of different human adult stem cells will have profound implications in optimising tissue engineering approaches and stem cell therapies.

20.
Lab Chip ; 17(12): 2135-2138, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28569325

ABSTRACT

Correction for 'Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine' by Judith M. Curran et al., Lab Chip, 2010, 10, 1662-1670.

SELECTION OF CITATIONS
SEARCH DETAIL
...