Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol J ; 17(6): e2100535, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35189031

ABSTRACT

For industrial applications, covalent immobilization of enzymes provides minimum leakage, recoverability, reusability, and high stability. Yet, the suitability of a given site on the enzyme for immobilization remains a trial-and-error procedure. Here, we investigate the reliability of design heuristics and a coarse-grain molecular simulation in predicting the optimum sites for covalent immobilization of TEM-1 ß-lactamase. We utilized Escherichia coli-lysate-based cell-free protein synthesis (CFPS) to produce variants containing a site-specific incorporated unnatural amino acid with a unique moiety to facilitate site directed covalent immobilization. To constrain the number of potential immobilization sites, we investigated the predictive capability of several design heuristics. The suitability of immobilization sites was determined by analyzing expression yields, specific activity, immobilization efficiency, and stability of variants. These experimental findings are compared with coarse-grain simulation of TEM-1 domain stability and thermal stability and analyzed for a priori predictive capabilities. This work demonstrates that the design heuristics successfully identify a subset of locations for experimental validation. Specifically, the nucleotide following amber stop codon and domain stability correlate well with the expression yield and specific activity of the variants, respectively. Our approach highlights the advantages of combining coarse-grain simulation and high-throughput experimentation using CFPS to identify optimal enzyme immobilization sites.


Subject(s)
Heuristics , beta-Lactamases , Enzyme Stability , Enzymes, Immobilized/metabolism , Escherichia coli/metabolism , Reproducibility of Results , beta-Lactamases/genetics , beta-Lactamases/metabolism
2.
Biotechnol J ; 17(2): e2100152, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34761537

ABSTRACT

Nuclear receptors (NRs) influence nearly every system of the body and our lives depend on correct NR signaling. Thus, a key environmental and pharmaceutical quest is to identify and detect chemicals which interact with nuclear hormone receptors, including endocrine disrupting chemicals (EDCs), therapeutic receptor modulators, and natural hormones. Previously reported biosensors of nuclear hormone receptor ligands facilitated rapid detection of NR ligands using cell-free protein synthesis (CFPS). In this work, the advantages of CFPS are further leveraged and combined with kinetic analysis, autoradiography, and western blot to elucidate the molecular mechanism of this biosensor. Additionally, mathematical simulations of enzyme kinetics are used to optimize the biosensor assay, ultimately lengthening its readable window by five-fold and improving sensor signal strength by two-fold. This approach enabled the creation of an on-demand thyroid hormone biosensor with an observable color-change readout. This mathematical and experimental approach provides insight for engineering rapid and field-deployable CFPS biosensors and promises to improve methods for detecting natural hormones, therapeutic receptor modulators, and EDCs.


Subject(s)
Biosensing Techniques , Endocrine Disruptors , Hormones , Kinetics , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...