Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Lancet Microbe ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38851206

ABSTRACT

BACKGROUND: The antibiotic bedaquiline is a key component of new WHO regimens for drug-resistant tuberculosis; however, predicting bedaquiline resistance from bacterial genotypes remains challenging. We aimed to understand the genetic mechanisms of bedaquiline resistance by analysing Mycobacterium tuberculosis isolates from South Africa. METHODS: For this genomic analysis, we conducted whole-genome sequencing of Mycobacterium tuberculosis samples collected at two referral laboratories in Cape Town and Johannesburg, covering regions of South Africa with a high prevalence of tuberculosis. We used the tool ARIBA to measure the status of predefined genes that are associated with bedaquiline resistance. To produce a broad genetic landscape of M tuberculosis in South Africa, we extended our analysis to include all publicly available isolates from the European Nucleotide Archive, including isolates obtained by the CRyPTIC consortium, for which minimum inhibitory concentrations of bedaquiline were available. FINDINGS: Between Jan 10, 2019, and July, 22, 2020, we sequenced 505 M tuberculosis isolates from 461 patients. Of the 64 isolates with mutations within the mmpR5 regulatory gene, we found 53 (83%) had independent acquisition of 31 different mutations, with a particular enrichment of truncated MmpR5 in bedaquiline-resistant isolates resulting from either frameshift mutations or the introduction of an insertion element. Truncation occurred across three M tuberculosis lineages, and were present in 66% of bedaquiline-resistant isolates. Although the distributions overlapped, the median minimum inhibitory concentration of bedaquiline was 0·25 mg/L (IQR 0·12-0·25) in mmpR5-disrupted isolates, compared with 0·06 mg/L (0·03-0·06) in wild-type M tuberculosis. INTERPRETATION: Reduction in the susceptibility of M tuberculosis to bedaquiline has evolved repeatedly across the phylogeny. In our data, we see no evidence that this reduction has led to the spread of a successful strain in South Africa. Binary phenotyping based on the bedaquiline breakpoint might be inappropriate to monitor resistance to this drug. We recommend the use of minimum inhibitory concentrations in addition to MmpR5 truncation screening to identify moderate increases in resistance to bedaquiline. FUNDING: US Centers for Disease Control and Prevention.

2.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746185

ABSTRACT

The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites. In combination with the disparate set of genome assembly workflows and lack of consistent quality control (QC) processes, the current genomes have many systematic errors that have evolved with the virus and amplicon schemes. These errors have significant impacts on the phylogeny, and therefore over the last few years, many thousands of hours of researchers time has been spent in "eyeballing" trees, looking for artefacts, and then patching the tree. Given the huge value of this dataset, we therefore set out to reprocess the complete set of public raw sequence data in a rigorous amplicon-aware manner, and build a cleaner phylogeny. Here we provide a global tree of 3,960,704 samples, built from a consistently assembled set of high quality consensus sequences from all available public data as of March 2023, viewable at https://viridian.taxonium.org. Each genome was constructed using a novel assembly tool called Viridian (https://github.com/iqbal-lab-org/viridian), developed specifically to process amplicon sequence data, eliminating artefactual errors and mask the genome at low quality positions. We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny. Phase 2 of our project will address the fact that the data in the public archives is heavily geographically biased towards the Global North. We therefore have contributed new raw data to ENA/SRA from many countries including Ghana, Thailand, Laos, Sri Lanka, India, Argentina and Singapore. We will incorporate these, along with all public raw data submitted between March 2023 and the current day, into an updated set of assemblies, and phylogeny. We hope the tree, consensus sequences and Viridian will be a valuable resource for researchers.

3.
Bioinformatics ; 39(12)2023 12 01.
Article in English | MEDLINE | ID: mdl-38039142

ABSTRACT

MOTIVATION: Microbial sequences generated from clinical samples are often contaminated with human host sequences that must be removed for ethical and legal reasons. Care must be taken to excise host sequences without inadvertently removing target microbial sequences to the detriment of downstream analyses such as variant calling and de novo assembly. RESULTS: To facilitate accurate host decontamination of both short and long sequencing reads, we developed Hostile, a tool capable of accurate host read removal using a laptop. We demonstrate that our approach removes at least 99.6% of real human reads and retains at least 99.989% of simulated bacterial reads. Using Hostile with a masked reference genome further increases bacterial read retention (≥99.997%) with negligible (≤0.001%) reduction in human read removal performance. Compared with an existing tool, Hostile removes 21%-23% more human short reads and 21-43 times fewer bacterial reads, typically in less time. AVAILABILITY AND IMPLEMENTATION: Hostile is implemented as an MIT-licensed Python package available from https://github.com/bede/hostile together with supplementary material.


Subject(s)
Decontamination , Software , Humans , Sequence Analysis, DNA , High-Throughput Nucleotide Sequencing , Genome , Bacteria/genetics
4.
Lancet Microbe ; 4(5): e358-e368, 2023 05.
Article in English | MEDLINE | ID: mdl-37003285

ABSTRACT

BACKGROUND: Bedaquiline is a core drug for the treatment of multidrug-resistant tuberculosis; however, the understanding of resistance mechanisms is poor, which is hampering rapid molecular diagnostics. Some bedaquiline-resistant mutants are also cross-resistant to clofazimine. To decipher bedaquiline and clofazimine resistance determinants, we combined experimental evolution, protein modelling, genome sequencing, and phenotypic data. METHODS: For this in-vitro and in-silico data analysis, we used a novel in-vitro evolutionary model using subinhibitory drug concentrations to select bedaquiline-resistant and clofazimine-resistant mutants. We determined bedaquiline and clofazimine minimum inhibitory concentrations and did Illumina and PacBio sequencing to characterise selected mutants and establish a mutation catalogue. This catalogue also includes phenotypic and genotypic data of a global collection of more than 14 000 clinical Mycobacterium tuberculosis complex isolates, and publicly available data. We investigated variants implicated in bedaquiline resistance by protein modelling and dynamic simulations. FINDINGS: We discerned 265 genomic variants implicated in bedaquiline resistance, with 250 (94%) variants affecting the transcriptional repressor (Rv0678) of the MmpS5-MmpL5 efflux system. We identified 40 new variants in vitro, and a new bedaquiline resistance mechanism caused by a large-scale genomic rearrangement. Additionally, we identified in vitro 15 (7%) of 208 mutations found in clinical bedaquiline-resistant isolates. From our in-vitro work, we detected 14 (16%) of 88 mutations so far identified as being associated with clofazimine resistance and also seen in clinically resistant strains, and catalogued 35 new mutations. Structural modelling of Rv0678 showed four major mechanisms of bedaquiline resistance: impaired DNA binding, reduction in protein stability, disruption of protein dimerisation, and alteration in affinity for its fatty acid ligand. INTERPRETATION: Our findings advance the understanding of drug resistance mechanisms in M tuberculosis complex strains. We have established an extended mutation catalogue, comprising variants implicated in resistance and susceptibility to bedaquiline and clofazimine. Our data emphasise that genotypic testing can delineate clinical isolates with borderline phenotypes, which is essential for the design of effective treatments. FUNDING: Leibniz ScienceCampus Evolutionary Medicine of the Lung, Deutsche Forschungsgemeinschaft, Research Training Group 2501 TransEvo, Rhodes Trust, Stanford University Medical Scientist Training Program, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Bill & Melinda Gates Foundation, Wellcome Trust, and Marie Sklodowska-Curie Actions.


Subject(s)
Clofazimine , Mycobacterium tuberculosis , Clofazimine/pharmacology , Clofazimine/therapeutic use , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Diarylquinolines/pharmacology , Diarylquinolines/therapeutic use
5.
Hortic Res ; 9: uhac218, 2022.
Article in English | MEDLINE | ID: mdl-36479587

ABSTRACT

Understanding the genetic architecture of apple phytochemicals, and their interplay with conventional selection traits, is critical for the development of new apple cultivars with enhanced health benefits. Apple accessions (n = 344) used for this genome-wide association study (GWAS) represented the wide diversity of metabolic profiles in the domesticated and wild Malus genepools. Fruit samples were phenotyped for 34 metabolites, including a stable vitamin C glycoside "ascorbic acid 2-ß-glucoside" (AA-2ßG), and the accessions were genotyped using the Apple 20 K SNP Array. Several fruit quality traits, including red skin over-colour (OCOL), were also assessed. Wild Malus accessions showed at least 2-fold higher average content of several metabolites (e.g. ascorbic acid, chlorogenic acid, phloridzin, and trilobatin) than Malus domestica accessions. Several new genomic regions and potential candidate genes underpinning the genetic diversity of apple phytochemicals were identified. The percentage of phenotypic variance explained by the best SNP ranged between 3% and 21% for the different metabolites. Novel association signals for OCOL in the syntenic regions on chromosomes 13 and 16 suggested that whole genome duplication has played a role in the evolution of apple red skin colour. Genetic correlations between phytochemicals and sensory traits were moderate. This study will assist in the selection of Malus accessions with specific phytochemical profiles to establish innovative genomics-based breeding strategies for the development of apple cultivars with enhanced nutritional value.

6.
Genome Biol ; 23(1): 147, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35791022

ABSTRACT

There are many short-read variant-calling tools, with different strengths and weaknesses. We present a tool, Minos, which combines outputs from arbitrary variant callers, increasing recall without loss of precision. We benchmark on 62 samples from three bacterial species and an outbreak of 385 Mycobacterium tuberculosis samples. Minos also enables joint genotyping; we demonstrate on a large (N=13k) M. tuberculosis cohort, building a map of non-synonymous SNPs and indels in a region where all such variants are assumed to cause rifampicin resistance. We quantify the correlation with phenotypic resistance and then replicate in a second cohort (N=10k).


Subject(s)
High-Throughput Nucleotide Sequencing , Mycobacterium tuberculosis , Genome, Bacterial , Genotype , Humans , INDEL Mutation , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide
8.
Bioinformatics ; 38(12): 3291-3293, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35551365

ABSTRACT

SUMMARY: Viral sequence data from clinical samples frequently contain contaminating human reads, which must be removed prior to sharing for legal and ethical reasons. To enable host read removal for SARS-CoV-2 sequencing data on low-specification laptops, we developed ReadItAndKeep, a fast lightweight tool for Illumina and nanopore data that only keeps reads matching the SARS-CoV-2 genome. Peak RAM usage is typically below 10 MB, and runtime less than 1 min. We show that by excluding the polyA tail from the viral reference, ReadItAndKeep prevents bleed-through of human reads, whereas mapping to the human genome lets some reads escape. We believe our test approach (including all possible reads from the human genome, human samples from each of the 26 populations in the 1000 genomes data and a diverse set of SARS-CoV-2 genomes) will also be useful for others. AVAILABILITY AND IMPLEMENTATION: ReadItAndKeep is implemented in C++, released under the MIT license, and available from https://github.com/GenomePathogenAnalysisService/read-it-and-keep. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
COVID-19 , Software , Humans , Sequence Analysis, DNA , SARS-CoV-2/genetics , Decontamination , High-Throughput Nucleotide Sequencing , Genome, Human
9.
Lancet Microbe ; 3(4): e265-e273, 2022 04.
Article in English | MEDLINE | ID: mdl-35373160

ABSTRACT

Background: Molecular diagnostics are considered the most promising route to achieving rapid, universal drug susceptibility testing for Mycobacterium tuberculosiscomplex (MTBC). We aimed to generate a WHO endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: A candidate gene approach was used to identify mutations as associated with resistance, or consistent with susceptibility, for 13 WHO endorsed anti-tuberculosis drugs. 38,215 MTBC isolates with paired whole-genome sequencing and phenotypic drug susceptibility testing data were amassed from 45 countries. For each mutation, a contingency table of binary phenotypes and presence or absence of the mutation computed positive predictive value, and Fisher's exact tests generated odds ratios and Benjamini-Hochberg corrected p-values. Mutations were graded as Associated with Resistance if present in at least 5 isolates, if the odds ratio was >1 with a statistically significant corrected p-value, and if the lower bound of the 95% confidence interval on the positive predictive value for phenotypic resistance was >25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: 15,667 associations were computed for 13,211 unique mutations linked to one or more drugs. 1,149/15,667 (7·3%) mutations were classified as associated with phenotypic resistance and 107/15,667 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was >80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were classified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: This first WHO endorsed catalogue of molecular targets for MTBC drug susceptibility testing provides a global standard for resistance interpretation. Its existence should encourage the implementation of molecular diagnostics by National Tuberculosis Programmes. Funding: UNITAID, Wellcome, MRC, BMGF.


Subject(s)
Ethambutol , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Drug Resistance , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , World Health Organization
10.
PLoS One ; 17(3): e0264492, 2022.
Article in English | MEDLINE | ID: mdl-35271613

ABSTRACT

Just like the scientific data they generate, simulation workflows for research should be findable, accessible, interoperable, and reusable (FAIR). However, while significant progress has been made towards FAIR data, the majority of science and engineering workflows used in research remain poorly documented and often unavailable, involving ad hoc scripts and manual steps, hindering reproducibility and stifling progress. We introduce Sim2Ls (pronounced simtools) and the Sim2L Python library that allow developers to create and share end-to-end computational workflows with well-defined and verified inputs and outputs. The Sim2L library makes Sim2Ls, their requirements, and their services discoverable, verifies inputs and outputs, and automatically stores results in a globally-accessible simulation cache and results database. This simulation ecosystem is available in nanoHUB, an open platform that also provides publication services for Sim2Ls, a computational environment for developers and users, and the hardware to execute runs and store results at no cost. We exemplify the use of Sim2Ls using two applications and discuss best practices towards FAIR simulation workflows and associated data.


Subject(s)
Data Management , Ecosystem , Computer Simulation , Reproducibility of Results , Software , Workflow
11.
IEEE Access ; 10: 54301-54312, 2022.
Article in English | MEDLINE | ID: mdl-37309510

ABSTRACT

Hearing loss is a common problem affecting the quality of life for thousands of people. However, many individuals with hearing loss are dissatisfied with the quality of modern hearing aids. Amplification is the main method of compensating for hearing loss in modern hearing aids. One common amplification technique is dynamic range compression, which maps audio signals onto a person's hearing range using an amplification curve. However, due to the frequency dependent nature of the human cochlea, compression is often performed independently in different frequency bands. This paper presents a real-time multirate multiband amplification system for hearing aids, which includes a multirate channelizer for separating an audio signal into eleven standard audiometric frequency bands, and an automatic gain control system for accurate control of the steady state and dynamic behavior of audio compression as specified by ANSI standards. The spectral channelizer offers high frequency resolution with low latency of 5.4 ms and about 14× improvement in complexity over a baseline design. Our automatic gain control includes a closed-form solution for satisfying any designated attack and release times for any desired compression parameters. The increased frequency resolution and precise gain adjustment allow our system to more accurately fulfill audiometric hearing aid prescriptions.

12.
Food Chem ; 374: 131703, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34902814

ABSTRACT

Bilberry (Vaccinium myrtillus) is a commercially important wild berry species, which accumulates high amounts of polyphenols, particularly anthocyanins, in the skin and flesh. Whilst a number of studies have quantified these phytochemicals in intact ripe bilberry fruit, we extend the current knowledge by investigating the spatial distribution of anthocyanin-associated polyphenols in fruit tissue, and study their links with primary metabolism during ripening. To address this, we used LC-MS and mass spectrometry imaging to measure and map primary and secondary metabolites in fruit. Correlation analysis showed that five sugars displayed strong positive correlations with anthocyanin accumulation, whereas all amino acids were negatively correlated. The accumulation patterns of polyphenols correlated in fruit skin and flesh, but altered with development. Finally, spatial segmentation analysis revealed that the chemical signatures of ripening first appear at defined regions under the skin and rapidly expand to encompass the entire fruit at the eating-ripe stage.


Subject(s)
Vaccinium myrtillus , Anthocyanins , Fruit/chemistry , Polyphenols/analysis
13.
PLoS Biol ; 19(11): e3001421, 2021 11.
Article in English | MEDLINE | ID: mdl-34752446

ABSTRACT

The open sharing of genomic data provides an incredibly rich resource for the study of bacterial evolution and function and even anthropogenic activities such as the widespread use of antimicrobials. However, these data consist of genomes assembled with different tools and levels of quality checking, and of large volumes of completely unprocessed raw sequence data. In both cases, considerable computational effort is required before biological questions can be addressed. Here, we assembled and characterised 661,405 bacterial genomes retrieved from the European Nucleotide Archive (ENA) in November of 2018 using a uniform standardised approach. Of these, 311,006 did not previously have an assembly. We produced a searchable COmpact Bit-sliced Signature (COBS) index, facilitating the easy interrogation of the entire dataset for a specific sequence (e.g., gene, mutation, or plasmid). Additional MinHash and pp-sketch indices support genome-wide comparisons and estimations of genomic distance. Combined, this resource will allow data to be easily subset and searched, phylogenetic relationships between genomes to be quickly elucidated, and hypotheses rapidly generated and tested. We believe that this combination of uniform processing and variety of search/filter functionalities will make this a resource of very wide utility. In terms of diversity within the data, a breakdown of the 639,981 high-quality genomes emphasised the uneven species composition of the ENA/public databases, with just 20 of the total 2,336 species making up 90% of the genomes. The overrepresented species tend to be acute/common human pathogens, aligning with research priorities at different levels from individual interests to funding bodies and national and global public health agencies.


Subject(s)
Bacteria/genetics , Biodiversity , DNA, Bacterial/genetics , Data Curation , Base Sequence , Drug Resistance, Bacterial/genetics , Species Specificity
14.
Genome Biol ; 22(1): 259, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34488837

ABSTRACT

Genome graphs allow very general representations of genetic variation; depending on the model and implementation, variation at different length-scales (single nucleotide polymorphisms (SNPs), structural variants) and on different sequence backgrounds can be incorporated with different levels of transparency. We implement a model which handles this multiscale variation and develop a JSON extension of VCF (jVCF) allowing for variant calls on multiple references, both implemented in our software gramtools. We find gramtools outperforms existing methods for genotyping SNPs overlapping large deletions in M. tuberculosis and is able to genotype on multiple alternate backgrounds in P. falciparum, revealing previously hidden recombination.


Subject(s)
Algorithms , Genetic Variation , Genome, Human , Alleles , Antigens, Surface/metabolism , Computer Simulation , Genotyping Techniques , Haplotypes/genetics , Humans , Mycobacterium tuberculosis/genetics , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Sequence Deletion
15.
Genome Biol ; 22(1): 267, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521456

ABSTRACT

We present pandora, a novel pan-genome graph structure and algorithms for identifying variants across the full bacterial pan-genome. As much bacterial adaptability hinges on the accessory genome, methods which analyze SNPs in just the core genome have unsatisfactory limitations. Pandora approximates a sequenced genome as a recombinant of references, detects novel variation and pan-genotypes multiple samples. Using a reference graph of 578 Escherichia coli genomes, we compare 20 diverse isolates. Pandora recovers more rare SNPs than single-reference-based tools, is significantly better than picking the closest RefSeq reference, and provides a stable framework for analyzing diverse samples without reference bias.


Subject(s)
Genome, Bacterial , Genomics/methods , Software , Algorithms , Escherichia coli/genetics , Genetic Variation , High-Throughput Nucleotide Sequencing , Nanopore Sequencing , Nucleotides , Sequence Alignment , Sequence Analysis, DNA
16.
Front Plant Sci ; 12: 685416, 2021.
Article in English | MEDLINE | ID: mdl-34335654

ABSTRACT

Tomato fruit stored below 12°C lose quality and can develop chilling injury upon subsequent transfer to a shelf temperature of 20°C. The more severe symptoms of altered fruit softening, uneven ripening and susceptibility to rots can cause postharvest losses. We compared the effects of exposure to mild (10°C) and severe chilling (4°C) on the fruit quality and transcriptome of 'Angelle', a cherry-type tomato, harvested at the red ripe stage. Storage at 4°C (but not at 10°C) for 27 days plus an additional 6 days at 20°C caused accelerated softening and the development of mealiness, both of which are commonly related to cell wall metabolism. Transcriptome analysis using RNA-Seq identified a range of transcripts encoding enzymes putatively involved in cell wall disassembly whose expression was strongly down-regulated at both 10 and 4°C, suggesting that accelerated softening at 4°C was due to factors unrelated to cell wall disassembly, such as reductions in turgor. In fruit exposed to severe chilling, the reduced transcript abundances of genes related to cell wall modification were predominantly irreversible and only partially restored upon rewarming of the fruit. Within 1 day of exposure to 4°C, large increases occurred in the expression of alternative oxidase, superoxide dismutase and several glutathione S-transferases, enzymes that protect cell contents from oxidative damage. Numerous heat shock proteins and chaperonins also showed large increases in expression, with genes showing peak transcript accumulation after different times of chilling exposure. These changes in transcript abundance were not induced at 10°C, and were reversible upon transfer of the fruit from 4 to 20°C. The data show that genes involved in cell wall modification and cellular protection have differential sensitivity to chilling temperatures, and exhibit different capacities for recovery upon rewarming of the fruit.

17.
Nat Commun ; 12(1): 2684, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976138

ABSTRACT

Shigella sonnei is the most common agent of shigellosis in high-income countries, and causes a significant disease burden in low- and middle-income countries. Antimicrobial resistance is increasingly common in all settings. Whole genome sequencing (WGS) is increasingly utilised for S. sonnei outbreak investigation and surveillance, but comparison of data between studies and labs is challenging. Here, we present a genomic framework and genotyping scheme for S. sonnei to efficiently identify genotype and resistance determinants from WGS data. The scheme is implemented in the software package Mykrobe and tested on thousands of genomes. Applying this approach to analyse >4,000 S. sonnei isolates sequenced in public health labs in three countries identified several common genotypes associated with increased rates of ciprofloxacin resistance and azithromycin resistance, confirming intercontinental spread of highly-resistant S. sonnei clones and demonstrating the genomic framework can facilitate monitoring the spread of resistant clones, including those that have recently emerged, at local and global scales.


Subject(s)
Dysentery, Bacillary/diagnosis , Genome, Bacterial/genetics , Genomics/methods , Shigella sonnei/genetics , Anti-Bacterial Agents/pharmacology , Australia , Azithromycin/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Dysentery, Bacillary/microbiology , England , Genetics, Population , Genotype , Geography , Global Health , Humans , Microbial Sensitivity Tests/methods , Phylogeny , Polymorphism, Single Nucleotide , Shigella sonnei/classification , Shigella sonnei/physiology , United States , Whole Genome Sequencing
18.
Cardiol Young ; 31(2): 229-232, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33153502

ABSTRACT

BACKGROUND: A 10% prevalence of intracranial aneurysms in patients with coarctation of the aorta has been described in a few studies. Our objective is to describe the rate of intracranial aneurysm detection in patients with coarctation of the aorta in the current era. We hypothesise that, with earlier detection and coarctation of the aorta intervention, the rate of intracranial aneurysm is lower than previously reported and screening imaging may only be warranted in older patients or patients with certain risk factors. METHODS: This is a retrospective study of 102 patients aged 13 years and older with coarctation who underwent brain computed tomography angiography, magnetic resonance imaging (MRI), or magnetic resonance angiography between January, 2000 and February, 2018. RESULTS: The median age of coarctation repair was 4.4 months (2 days-47 years) and the initial repair was primarily surgical (90.2%). There were 11 former smokers, 4 current smokers, and 13 patients with ongoing hypertension. Imaging modalities included computed tomography angiography (13.7%), MRI (41.2%), and magnetic resonance angiography (46.1%), performed at a median age of 33.3 years, 22.4 years, and 25 years, respectively. There were 42 studies performed for screening, 48 studies performed for neurologic symptoms, and 12 studies performed for both screening and symptoms. There were no intracranial aneurysms detected in this study. CONCLUSIONS: These results suggest that the rate of intracranial aneurysms may be lower than previously reported and larger studies should explore the risk of intracranial aneurysms in coarctation of the aorta in the current era.


Subject(s)
Aortic Coarctation , Intracranial Aneurysm , Adult , Aged , Aorta , Aortic Coarctation/diagnostic imaging , Aortic Coarctation/epidemiology , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/epidemiology , Prevalence , Retrospective Studies
19.
Front Plant Sci ; 11: 590846, 2020.
Article in English | MEDLINE | ID: mdl-33469460

ABSTRACT

Runs of homozygosity (ROH) have been widely used to study population history and trait architecture in humans and livestock species, but their application in self-incompatible plants has not been reported. The distributions of ROH in 199 accessions representing Asian pears (45), European pears (109), and interspecific hybrids (45) were investigated using genotyping-by-sequencing in this study. Fruit phenotypes including fruit weight, firmness, Brix, titratable acidity, and flavor volatiles were measured for genotype-phenotype analyses. The average number of ROH and the average total genomic length of ROH were 6 and 11 Mb, respectively, in Asian accessions, and 13 and 30 Mb, respectively, in European accessions. Significant associations between genomic inbreeding coefficients (FROH) and phenotypes were observed for 23 out of 32 traits analyzed. An overlap between ROH islands and significant markers from genome-wide association analyses was observed. Previously published quantitative trait loci for fruit traits and disease resistances also overlapped with some of the ROH islands. A prominent ROH island at the bottom of linkage group 17 overlapped with a recombination-supressed genomic region harboring the self-incompatibility locus. The observed ROH patterns suggested that systematic breeding of European pears would have started earlier than of Asian pears. Our research suggest that FROH would serve as a novel tool for managing inbreeding in gene-banks of self-incompatible plant species. ROH mapping provides a complementary strategy to unravel the genetic architecture of complex traits, and to evaluate differential selection in outbred plants. This seminal work would provide foundation for the ROH research in self-incompatible plants.

20.
Commun Biol ; 2: 428, 2019.
Article in English | MEDLINE | ID: mdl-31799430

ABSTRACT

The environmental bacterium Burkholderia pseudomallei causes melioidosis, an important endemic human disease in tropical and sub-tropical countries. This bacterium occupies broad ecological niches including soil, contaminated water, single-cell microbes, plants and infection in a range of animal species. Here, we performed genome-wide association studies for genetic determinants of environmental and human adaptation using a combined dataset of 1,010 whole genome sequences of B. pseudomallei from Northeast Thailand and Australia, representing two major disease hotspots. With these data, we identified 47 genes from 26 distinct loci associated with clinical or environmental isolates from Thailand and replicated 12 genes in an independent Australian cohort. We next outlined the selective pressures on the genetic loci (dN/dS) and the frequency at which they had been gained or lost throughout their evolutionary history, reflecting the bacterial adaptability to a wide range of ecological niches. Finally, we highlighted loci likely implicated in human disease.


Subject(s)
Burkholderia pseudomallei/classification , Burkholderia pseudomallei/genetics , Environment , Environmental Microbiology , Gene-Environment Interaction , Genetic Variation , Melioidosis/microbiology , Burkholderia pseudomallei/isolation & purification , Evolution, Molecular , Geography , Humans , Melioidosis/epidemiology , Models, Biological , Phylogeny , Phylogeography , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...