Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 15(4): e37397, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37182017

ABSTRACT

Purpose Laser interstitial thermal therapy (LITT) is a minimally invasive, image-guided, cytoreductive procedure to treat recurrent glioblastoma. This study implemented dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) methods and employed a model selection paradigm to localize and quantify post-LITT blood-brain barrier (BBB) permeability in the ablation vicinity. Serum levels of neuron-specific enolase (NSE), a peripheral marker of increased BBB permeability, were measured. Methods Seventeen patients were enrolled in the study. Using an enzyme-linked immunosorbent assay, serum NSE was measured preoperatively, 24 hours postoperatively, and at two, eight, 12, and 16 weeks postoperatively, depending on postoperative adjuvant treatment. Of the 17 patients, four had longitudinal DCE-MRI data available, from which blood-to-brain forward volumetric transfer constant (Ktrans) data were assessed. Imaging was performed preoperatively, 24 hours postoperatively, and between two and eight weeks postoperatively. Results Serum NSE increased at 24 hours following ablation (p=0.04), peaked at two weeks, and returned to baseline by eight weeks postoperatively. Ktrans was found to be elevated in the peri-ablation periphery 24 hours after the procedure. This increase persisted for two weeks. Conclusion Following the LITT procedure, serum NSE levels and peri-ablation Ktrans estimated from DCE-MRI demonstrated increases during the first two weeks after ablation, suggesting transiently increased BBB permeability.

2.
Surg Neurol Int ; 13: 99, 2022.
Article in English | MEDLINE | ID: mdl-35399905

ABSTRACT

Background: 5-aminolevulinic acid (5-ALA) is a valuable surgical adjuvant used for the resection of glioblastoma multiforme (GBM). Since Food and Drug Administration approval in 2017, 5-ALA has been used in over 37,000 cases. The current recommendation for peak efficacy and intraoperative fluorescence is within 4 h after administration. This narrow time window imposes a perioperative time constraint which may complicate or preclude the use of 5-ALA in GBM surgery. Case Description: This case report describes the prolonged activity of 5-ALA in a 66-year-old patient with a newly diagnosed GBM lesion within the left supramarginal gyrus. An awake craniotomy with language and sensorimotor mapping was planned along with 5-ALA fluorescence guidance. Shortly, after receiving the preoperative 5-ALA dose, the patient developed a fever. Surgery was postponed for an infectious disease workup which proved negative. The patient was taken to surgery the following day, 36 h after 5-ALA administration. Despite the delay, intraoperative fluorescence within the tumor remained and was sufficient to guide resection. Postoperative imaging confirmed a gross total resection of the tumor. Conclusion: The use of 5-ALA as an intraoperative adjuvant may still be effective for patients beyond the recommended 4-h window after initial administration. Reconsideration of current use of 5-ALA is warranted.

3.
Front Neurol ; 11: 554633, 2020.
Article in English | MEDLINE | ID: mdl-33162926

ABSTRACT

The neurological ICU (neuro ICU) often suffers from significant limitations due to scarce resource availability for their neurocritical care patients. Neuro ICU patients require frequent neurological evaluations, continuous monitoring of various physiological parameters, frequent imaging, and routine lab testing. This amasses large amounts of data specific to each patient. Neuro ICU teams are often overburdened by the resulting complexity of data for each patient. Machine Learning algorithms (ML), are uniquely capable of interpreting high-dimensional datasets that are too difficult for humans to comprehend. Therefore, the application of ML in the neuro ICU could alleviate the burden of analyzing big datasets for each patient. This review serves to (1) briefly summarize ML and compare the different types of MLs, (2) review recent ML applications to improve neuro ICU management and (3) describe the future implications of ML to neuro ICU management.

4.
Philos Trans R Soc Lond B Biol Sci ; 375(1801): 20190415, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32362256

ABSTRACT

Neuronal mitochondrial dysfunction causes primary mitochondrial diseases and likely contributes to neurodegenerative diseases including Parkinson's and Alzheimer's disease. Mitochondrial dysfunction has also been documented in neurodevelopmental disorders such as tuberous sclerosis complex and autism spectrum disorder. Only symptomatic treatments exist for neurodevelopmental disorders, while neurodegenerative diseases are largely untreatable. Altered mitochondrial function activates mitochondrial retrograde signalling pathways, which enable signalling to the nucleus to reprogramme nuclear gene expression. In this review, we discuss the role of mitochondrial retrograde signalling in neurological diseases. We summarize how mitochondrial dysfunction contributes to neurodegenerative disease and neurodevelopmental disorders. Mitochondrial signalling mechanisms that have relevance to neurological disease are discussed. We then describe studies documenting retrograde signalling pathways in neurons and glia, and in animal models of neuronal mitochondrial dysfunction and neurological disease. Finally, we suggest how specific retrograde signalling pathways can be targeted to develop novel treatments for neurological diseases. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.


Subject(s)
Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy , Signal Transduction , Animals , Disease Models, Animal , Humans
5.
J Mol Biol ; 432(8): 2692-2713, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32119873

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) constitute aggressive neurodegenerative pathologies that lead to the progressive degeneration of upper and lower motor neurons and of neocortical areas, respectively. In the past decade, the identification of several genes that cause these disorders indicated that the two diseases overlap in a multifaceted spectrum of conditions. The autophagy-lysosome system has been identified as a main intersection for the onset and progression of neurodegeneration in ALS/FTD. Genetic evidence has revealed that several genes with a mechanistic role at different stages of the autophagy process are mutated in patients with ALS/FTD. Moreover, the three main proteins aggregating in ALS/FTD, including in sporadic cases, are also targeted by autophagy and affect this process. Here, we examine the varied dysfunctions and degrees of involvement of the autophagy-lysosome system that have been discovered in ALS/FTD. We argue that these findings shed light on the pathological mechanisms in the ALS/FTD spectrum and conclude that they have important consequences both for treatment options and for the basic biomolecular understanding of how this process intersects with RNA metabolism, the other major cellular process reported to be dysfunctional in part of the ALS/FTD spectrum.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Autophagy , Frontotemporal Dementia/pathology , Animals , Humans
6.
J Cell Biol ; 218(12): 4007-4016, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31645461

ABSTRACT

Mitochondrial stress contributes to a range of neurological diseases. Mitonuclear signaling pathways triggered by mitochondrial stress remodel cellular physiology and metabolism. How these signaling mechanisms contribute to neuronal dysfunction and disease is poorly understood. We find that mitochondrial stress in neurons activates the transcription factor ATF4 as part of the endoplasmic reticulum unfolded protein response (UPR) in Drosophila We show that ATF4 activation reprograms nuclear gene expression and contributes to neuronal dysfunction. Mitochondrial stress causes an ATF4-dependent increase in the level of the metabolite L-2-hydroxyglutarate (L-2-HG) in the Drosophila brain. Reducing L-2-HG levels directly, by overexpressing L-2-HG dehydrogenase, improves neurological function. Modulation of L-2-HG levels by mitochondrial stress signaling therefore regulates neuronal function.


Subject(s)
Activating Transcription Factor 4/metabolism , Brain/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Glutarates/metabolism , Mitochondria/metabolism , Neurons/pathology , Transcription Factors/metabolism , Animals , Cell Nucleus/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Female , Male , Mucous Membrane/metabolism , Signal Transduction , Unfolded Protein Response
7.
FEBS Lett ; 592(5): 663-678, 2018 03.
Article in English | MEDLINE | ID: mdl-29086414

ABSTRACT

Mitochondria generate the majority of cellular ATP and are essential for neuronal function. Loss of mitochondrial activity leads to primary mitochondrial diseases and may contribute to neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Mitochondria communicate with the cell through mitochondrial retrograde signaling pathways. These signaling pathways are triggered by mitochondrial dysfunction and allow the organelle to control nuclear gene transcription. Neuronal mitochondrial retrograde signaling pathways have been identified in disease model systems and targeted to restore neuronal function and prevent neurodegeneration. In this review, we describe yeast and mammalian cellular models that have paved the way in the investigation of mitochondrial retrograde mechanisms. We then discuss the evidence for retrograde signaling in neurons and our current knowledge of retrograde signaling mechanisms in neuronal model systems. We argue that targeting mitochondrial retrograde pathways has the potential to lead to novel treatments for neurological diseases.


Subject(s)
Alzheimer Disease/metabolism , Central Nervous System/metabolism , Mitochondria/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Signal Transduction , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Central Nervous System/pathology , Disease Models, Animal , Humans , Mitochondria/genetics , Mitochondria/pathology , Neurons/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...