Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(33): 28756-28766, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36033662

ABSTRACT

The development of a one-step amination-cyclization cascade reaction for the synthesis of N-substituted iminosugars from iodo-pentoses and hexoses is reported. This novel methodology allows for the stereoselective conversion of easily accessible iodo-aldoses and iodo-ketoses into iminosugars in a single step, in highly efficient yields (63-95%), and in aqueous media. Furthermore, the use of functionalized amines allows for the synthesis of N-functionalized iminosugars without additional steps. To illustrate this methodology, a number of biologically important iminosugars were prepared, including 1-deoxynojirimycin, (3S,4R,5S,6R)-azepane-3,4,5,6-tetraol, and N-functionalized 1-deoxymannojirimycins.

2.
Bioorg Med Chem ; 24(17): 3932-3939, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27108400

ABSTRACT

A series of N,N-bis(glycityl)amines with promising anti-cancer activity were prepared via the reductive amination of pentoses and hexoses, and subsequently screened for their ability to selectively inhibit the growth of cancerous versus non-cancerous cells. For the first time, we show that this class of compounds possesses anti-proliferative activity, and, while the selective killing of brain cancer (LN18) cells versus matched (SVG-P12) cells was modest, several of the amines, including d-arabinitylamine 1a and d-fucitylamine 1g, exhibited low micromolar IC50 values for HL60 cells. Moreover, these two amines showed good selectivity towards HL60 cells when compared to non-cancerous HEK-293 cells. The compounds also showed low micromolar inhibition of the leukaemic cell line, THP-1. The modes of action of amines 1a and 1g were then determined using yeast chemical genetics, whereby it was established that both compounds affect similar but distinct sets of biochemical pathways. Notably purine nucleoside monophosphate biosynthesis was identified as an enriched mechanism. The rapid synthesis of the amines and their unique mode of action thus make them attractive targets for further development as anti-cancer drugs.


Subject(s)
Amino Sugars/pharmacology , Antineoplastic Agents/pharmacology , Sugar Alcohols/pharmacology , Amino Sugars/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Doxorubicin/pharmacology , HEK293 Cells , Humans , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Structure-Activity Relationship , Sugar Alcohols/chemical synthesis , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...