Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(23): e2305484, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572510

ABSTRACT

Delivering cargo to the central nervous system (CNS) remains a pharmacological challenge. For infectious diseases such as HIV, the CNS acts as a latent reservoir that is inadequately managed by systemic antiretrovirals (ARTs). ARTs thus cannot eradicate HIV, and given CNS infection, patients experience neurological deficits collectively referred to as "neuroHIV". Herein, the development of bioinspired ionic liquid-coated nanoparticles (IL-NPs) for in situ hitchhiking on red blood cells (RBCs) is reported, which enables 48% brain delivery of intracarotid arterial- infused cargo. Moreover, IL choline trans-2-hexenoate (CA2HA 1:2) demonstrates preferential accumulation in parenchymal microglia over endothelial cells post-delivery. This study further demonstrates successful loading of abacavir (ABC), an ART that is challenging to encapsulate, into IL-NPs, and verifies retention of antiviral efficacy in vitro. IL-NPs are not cytotoxic to primary human peripheral blood mononuclear cells (PBMCs) and the CA2HA 1:2 coating itself confers notable anti-viremic capacity. In addition, in vitro cell culture assays show markedly increased uptake of IL-NPs into neural cells compared to bare PLGA nanoparticles. This work debuts bioinspired ionic liquids as promising nanoparticle coatings to assist CNS biodistribution and has the potential to revolutionize the delivery of cargos (i.e., drugs, viral vectors) through compartmental barriers such as the blood-brain-barrier (BBB).


Subject(s)
Brain , HIV Infections , Ionic Liquids , Nanoparticles , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Brain/metabolism , Brain/drug effects , Ionic Liquids/chemistry , Animals , Humans , HIV Infections/drug therapy , Rats , Drug Delivery Systems/methods , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice , Male
2.
Res Sq ; 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36824802

ABSTRACT

Delivering cargo to the central nervous system (CNS) remains a pharmacological challenge. For infectious diseases such as HIV, the CNS acts as a latent reservoir that is inadequately managed by systemic antiretrovirals (ARTs). ARTs thus cannot eradicate HIV, and given CNS infection, patients experience an array of neurological deficits that are collectively referred to as 'neuroHIV'. Herein we report the development of bioinspired ionic liquid-coated nanoparticles (IL-NPs) for in situ hitchhiking on red blood cells (RBCs), which enabled 48% delivery of intravenously infused cargo to the brain. Moreover, the ionic liquid (IL) choline trans-2-hexenoate (CA2HA 1:2) demonstrated preferential accumulation in parenchymal microglia over endothelial cells post-delivery. We further demonstrate the successful loading of abacavir (ABC), an ART that is challenging to encapsulate, into the IL-coated NPs and verify the retention of antiviral efficacy in vitro. IL-NPs were not cytotoxic to primary human peripheral blood mononuclear cells (PBMCs) and the CA2HA 1:2 coating conferred notable anti-viremic capacity on its own. In addition, in vitro cell culture assays showed markedly increased uptake of IL-coated nanoparticles into neuronal cells compared to bare nanoparticles. This work debuts bioinspired ionic liquids as promising nanoparticle coatings to assist CNS biodistribution and has the potential to revolutionize the delivery of cargos (i.e., drugs, viral vectors) through compartmental barriers such as the blood-brain-barrier (BBB), illustrated in the graphical abstract below.

SELECTION OF CITATIONS
SEARCH DETAIL
...