Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Blood Cancer Discov ; 3(6): 536-553, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36053528

ABSTRACT

Myeloblast expansion is a hallmark of disease progression and comprises CD34+ hematopoietic stem and progenitor cells (HSPC). How this compartment evolves during disease progression in chronic myeloid neoplasms is unknown. Using single-cell RNA sequencing and high-parameter flow cytometry, we show that chronic myelomonocytic leukemia (CMML) CD34+ HSPC can be classified into three differentiation trajectories: monocytic, megakaryocyte-erythroid progenitor (MEP), and normal-like. Hallmarks of monocytic-biased trajectory were enrichment of CD120b+ inflammatory granulocyte-macrophage progenitor (GMP)-like cells, activated cytokine receptor signaling, phenotypic hematopoietic stem cell (HSC) depletion, and adverse outcomes. Cytokine receptor diversity was generally an adverse feature and elevated in CD120b+ GMPs. Hypomethylating agents decreased monocytic-biased cells in CMML patients. Given the enrichment of RAS pathway mutations in monocytic-biased cells, NRAS-competitive transplants and LPS-treated xenograft models recapitulated monocytic-biased CMML, suggesting that hematopoietic stress precipitates the monocytic-biased state. Deconvolution of HSPC compartments in other myeloid neoplasms and identifying therapeutic strategies to mitigate the monocytic-biased differentiation trajectory should be explored. SIGNIFICANCE: Our findings establish that multiple differentiation states underlie CMML disease progression. These states are negatively augmented by inflammation and positively affected by hypomethylating agents. Furthermore, we identify HSC depletion and expansion of GMP-like cells with increased cytokine receptor diversity as a feature of myeloblast expansion in inflammatory chronic myeloid neoplasms. This article is highlighted in the In This Issue feature, p. 476.


Subject(s)
Leukemia, Myelomonocytic, Chronic , Leukemia, Myelomonocytic, Juvenile , Humans , Leukemia, Myelomonocytic, Chronic/genetics , Hematopoietic Stem Cells , Antigens, CD34/genetics , Leukemia, Myelomonocytic, Juvenile/metabolism , Disease Progression , Receptors, Cytokine/metabolism
3.
Blood ; 139(7): 1066-1079, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34699595

ABSTRACT

Mutations in chromatin regulator ASXL1 are frequently identified in myeloid malignancies, in particular ∼40% of patients with chronic myelomonocytic leukemia (CMML). ASXL1 mutations are associated with poor prognosis in CMML and significantly co-occur with NRAS mutations. Here, we show that concurrent ASXL1 and NRAS mutations defined a population of CMML patients who had shorter leukemia-free survival than those with ASXL1 mutation only. Corroborating this human data, Asxl1-/- accelerated CMML progression and promoted CMML transformation to acute myeloid leukemia (AML) in NrasG12D/+ mice. NrasG12D/+;Asxl1-/- (NA) leukemia cells displayed hyperactivation of MEK/ERK signaling, increased global levels of H3K27ac, upregulation of Flt3. Moreover, we find that NA-AML cells overexpressed all the major inhibitory immune checkpoint ligands: programmed death-ligand 1 (PD-L1)/PD-L2, CD155, and CD80/CD86. Among them, overexpression of PD-L1 and CD86 correlated with upregulation of AP-1 transcription factors (TFs) in NA-AML cells. An AP-1 inhibitor or short hairpin RNAs against AP-1 TF Jun decreased PD-L1 and CD86 expression in NA-AML cells. Once NA-AML cells were transplanted into syngeneic recipients, NA-derived T cells were not detectable. Host-derived wild-type T cells overexpressed programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) receptors, leading to a predominant exhausted T-cell phenotype. Combined inhibition of MEK and BET resulted in downregulation of Flt3 and AP-1 expression, partial restoration of the immune microenvironment, enhancement of CD8 T-cell cytotoxicity, and prolonged survival in NA-AML mice. Our study suggests that combined targeted therapy and immunotherapy may be beneficial for treating secondary AML with concurrent ASXL1 and NRAS mutations.


Subject(s)
Disease Models, Animal , GTP Phosphohydrolases/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myelomonocytic, Chronic/pathology , Membrane Proteins/genetics , Mutation , Repressor Proteins/genetics , Tumor Microenvironment , Animals , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/immunology , Mice , Monomeric GTP-Binding Proteins/genetics , Phenotype , Signal Transduction
4.
Clin Cancer Res ; 27(22): 6095-6105, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34253584

ABSTRACT

PURPOSE: Chronic myelomonocytic leukemia (CMML) is a rare leukemia characterized by peripheral monocytosis with no disease-modifying therapies. CMML cells are uniquely hypersensitive to granulocyte-macrophage colony-stimulating factor (GM-CSF) and robustly engraft in immunocompromised mice that secrete human cytokines. To leverage these unique biological features, we conducted an integrated human and murine study evaluating ruxolitinib, a JAK1/2 inhibitor that potently downregulates intracellular GM-CSF signaling. PATIENTS AND METHODS: A total of 50 patients with WHO-defined CMML were enrolled in this open-label, multi-institution phase I/II clinical study, with a ruxolitinib dose of 20 mg twice daily studied in phase II. In parallel, 49 patient-derived xenografts (PDX) derived from 13 study participants were generated and randomized to receive ruxolitinib or vehicle control. RESULTS: The most common grade 3/4 treatment-related toxicities observed were anemia (10%) and thrombocytopenia (6%). The clinical overall response rate was 38% by Myelodysplastic Syndrome/Myeloproliferative Neoplasm (MDS/MPN) International Working Group (IWG) criteria and 43% of patients with baseline splenomegaly achieved a spleen response. Profiling of cytokine levels and somatic mutations at baseline failed to identify predictive biomarkers. PDX models derived from screening samples of study participants recapitulated responses seen in humans, particularly spleen responses, and corroborated ruxolitinib's clinical efficacy in a randomized murine study not feasible in human trials. CONCLUSIONS: Ruxolitinib demonstrated clinical efficacy and an acceptable adverse event profile in patients with CMML, identifying a potential novel therapeutic in this rare malignancy. Furthermore, this study demonstrates proof of concept that PDX modeling can recapitulate responses of patients treated on clinical trial and represents a novel correlative study that corroborates clinical efficacy seen in humans.See related commentary by Shastri and Adrianzen-Herrera, p. 6069.


Subject(s)
Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Leukemia, Myelomonocytic, Chronic/drug therapy , Nitriles/pharmacology , Nitriles/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Adult , Aged , Aged, 80 and over , Animals , Biomarkers, Tumor , Clinical Trials as Topic , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Drug Evaluation, Preclinical , Female , Humans , Leukemia, Myelomonocytic, Chronic/diagnosis , Leukemia, Myelomonocytic, Chronic/etiology , Leukemia, Myelomonocytic, Chronic/mortality , Male , Mice , Middle Aged , Mutation , Prognosis , Treatment Outcome
6.
Blood Adv ; 5(4): 1017-1028, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33591325

ABSTRACT

Hypomethylating agents (HMAs) are widely used in the treatment of myelodysplastic syndromes (MDSs), yet identifying those patients unlikely to benefit remains challenging. We assessed response and overall survival (OS) in 247 patients molecularly profiled by next-generation sequencing (NGS) before first-line HMA therapy, and a subset of 108 patients were sequenced serially during treatment. The most common mutations included TP53 (33.1%), ASXL1 (19%), TET2 (16.5%), DNMT3A (14.1%), and SRSF2 (12.1%). The overall response rate was 42.1%, with the composite TET2-mutant/ASXL1 wild-type genotype representing the strongest predictor of response (overall response rate, 62.1%; complete remission rate, 34.5%). The median OS for the cohort was 15 months, and the number of mutations detected by NGS (hazard ratio [HR], 1.22; P = .02), as well as mutations in TP53 (HR, 2.33; P = .001) and EZH2 (HR, 2.41; P = .04) were identified as independent covariates associated with inferior OS in multivariable analysis. Serial molecular profiling revealed that clearance of TP53 mutations during HMA therapy was associated with superior OS (HR, 0.28; P = .001) and improved outcome in patients proceeding to allogeneic hematopoietic cell transplantation. These data support baseline molecular profiling by NGS in MDS patients treated with HMAs and provide novel observations of sequential profiling during therapy that provide particular value in TP53-mutated disease.


Subject(s)
Hematopoietic Stem Cell Transplantation , Myelodysplastic Syndromes , High-Throughput Nucleotide Sequencing , Humans , Mutation , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Prognosis
7.
Best Pract Res Clin Haematol ; 33(3): 101195, 2020 09.
Article in English | MEDLINE | ID: mdl-33038984

ABSTRACT

The myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are a heterogenous group of myeloid malignancies hallmarked by clinicopathologic features that overlap with myelodysplastic syndromes and myeloproliferative neoplasms. Formally recognized by the World Health Organization, this group includes the entities chronic myelomonocytic leukemia, juvenile myelomonocytic leukemia, atypical chronic myeloid leukemia, MDS/MPN with ring sideroblasts and thrombocytosis and MDS/MPN, unclassifiable. Advancements in next generation sequencing have begun to unravel the molecular underpinnings of these diseases, identifying an array of recurrently mutated genes involved in epigenetic regulation, RNA splicing, transcription, and cell signaling. Despite molecular overlap with other myeloid malignancies, each entity displays a unique spectrum of somatic mutations supporting their unique pathobiology and clinical features. Importantly, molecular profiling is becoming an integral tool utilized in routine clinical practice. This review summarizes our current understanding of the molecular pathogenesis of overlap syndromes and details the impact of somatic mutations in diagnostic, prognostic, and therapeutic decision-making.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative , Leukemia, Myelomonocytic, Juvenile , Myelodysplastic Syndromes , Thrombocytosis , Humans , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/metabolism , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy , Leukemia, Myelomonocytic, Juvenile/diagnosis , Leukemia, Myelomonocytic, Juvenile/genetics , Leukemia, Myelomonocytic, Juvenile/metabolism , Leukemia, Myelomonocytic, Juvenile/therapy , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/therapy , Thrombocytosis/diagnosis , Thrombocytosis/genetics , Thrombocytosis/metabolism , Thrombocytosis/therapy
8.
Hematol Oncol Clin North Am ; 34(2): 421-440, 2020 04.
Article in English | MEDLINE | ID: mdl-32089220

ABSTRACT

Mutations in TP53 are observed in ∼20% of patients with myelodysplastic syndromes (MDS), with increased frequency seen in patients with a complex karyotype and cases of therapy-related MDS. TP53 mutations represent perhaps the single greatest negative prognostic indicator in MDS. Inferior outcomes are demonstrated with all approved treatment approaches, although hypomethylating agents remain the standard frontline treatment option. Although outcomes with allogeneic hematopoietic stem cell transplant are poor, it remains the only potentially curative therapy. Novel agents are required to improve outcomes in this molecular subgroup, with therapies that directly target the mutant protein and immunotherapies demonstrating greatest potential.


Subject(s)
Biomarkers, Tumor , Molecular Targeted Therapy , Mutation , Myelodysplastic Syndromes/genetics , Tumor Suppressor Protein p53/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Combined Modality Therapy , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Molecular Targeted Therapy/methods , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/mortality , Prognosis , Treatment Outcome , Tumor Suppressor Protein p53/antagonists & inhibitors
9.
Best Pract Res Clin Haematol ; 32(2): 134-144, 2019 06.
Article in English | MEDLINE | ID: mdl-31203995

ABSTRACT

Mutations in the essential tumor suppressor gene, TP53, are observed in only 5-10% of acute myeloid leukemia (AML) cases, but are highly associated with therapy-related AML and cases with complex karyotype. The mutational status of TP53 is a critical prognostic indicator, with dismal outcomes consistently observed across studies. Response rates to traditional cytotoxic chemotherapy are poor and long-term survival after allogeneic hematopoietic stem cell transplant is rare. Therapy with hypomethylating agents has resulted in a modest improvement in outcomes over intensive chemotherapy, but durable responses are seldom observed. In view of the intrinsic resistance to standard chemotherapies conferred by mutations in TP53, novel treatment approaches are required. In this review, we examine the current treatment landscape in TP53 mutated AML and discuss emerging therapeutic approaches currently under clinical investigation.


Subject(s)
Leukemia, Myeloid, Acute , Mutation , Tumor Suppressor Protein p53 , Disease-Free Survival , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Survival Rate , Time Factors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Curr Treat Options Oncol ; 19(12): 67, 2018 10 27.
Article in English | MEDLINE | ID: mdl-30367269

ABSTRACT

OPINION STATEMENT: Chronic myelomonocytic leukemia (CMML) is an aggressive myeloid neoplasm in which treatment strategies with the capacity to improve survival are currently lacking. Clinical features are heterogeneous and although the overall prognosis is poor, survival can vary significantly between individuals. This reflects the need for an individualized treatment approach which incorporates accurate risk stratification. Though numerous prognostic scores exist, newer CMML-specific models incorporating molecular data should be favored. While asymptomatic, low-risk patients should be observed until their disease progresses, the majority of patients will require treatment. Due to a deficiency in treatments with disease-modifying capacity, any patient who requires treatment should be considered for enrollment in clinical trials evaluating novel therapeutic approaches. Allogeneic stem cell transplant (allo-SCT) remains the only current therapy with the potential to cure the disease and should be considered in most patients with intermediate- to high-risk disease. However, substantial risks are involved and, in part, because of advanced age at diagnosis, a minority of patients are candidates. Hypomethylating agents (HMAs) have become a preferred treatment approach, and should be used in those with cytopenias. Patients presenting with proliferative features can be treated with hydroxyurea to manage their symptoms and control leukocytosis, though HMAs can be incorporated as well, particularly in patients with higher risk disease. HMAs should also be considered in patients with a high burden of disease prior to proceeding with allo-SCT. Induction chemotherapy should be reserved for younger, healthy patients who have transformed to acute myeloid leukemia to induce remission prior to transplant. Supportive care utilizing transfusion support, erythropoiesis-stimulating agents, and infection prevention measures should be incorporated into the care of all patients.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Hematopoietic Stem Cell Transplantation/methods , Leukemia, Myelomonocytic, Chronic/therapy , Transplantation, Homologous/methods , Azacitidine/therapeutic use , Decitabine/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Induction Chemotherapy/methods , Leukemia, Myelomonocytic, Chronic/mortality , Transplantation, Homologous/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...