Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 101: 110524, 2023 01.
Article in English | MEDLINE | ID: mdl-36379377

ABSTRACT

Src Family Kinases (SFKs) are tyrosine kinases known to regulate glucose and fatty acid metabolism as well as oxidative phosphorylation (OXPHOS) in mammalian mitochondria. We and others discovered the association of the SFK kinases Fyn and c-Src with mitochondrial translation components. This translational system is responsible for the synthesis of 13 mitochondrial (mt)-encoded subunits of the OXPHOS complexes and is, thus, essential for energy generation. Mitochondrial ribosomal proteins and various translation elongation factors including Tu (EF-Tumt) have been identified as possible Fyn and c-Src kinase targets. However, the phosphorylation of specific residues in EF-Tumt by these kinases and their roles in the regulation of protein synthesis are yet to be explored. In this study, we report the association of EF-Tumt with cSrc kinase and mapping of phosphorylated Tyr (pTyr) residues by these kinases. We determined that a specific Tyr residue in EF-Tumt at position 266 (EF-Tumt-Y266), located in a highly conserved c-Src consensus motif is one of the major phosphorylation sites. The potential role of EF-Tumt-Y266 phosphorylation in regulation of mitochondrial translation investigated by site-directed mutagenesis. Its phosphomimetic to Glu residue (EF-Tumt-E266) inhibited ternary complex (EF-Tumt•GTP•aatRNA) formation and translation in vitro. Our findings along with data mining analysis of the c-Src knock out (KO) mice proteome suggest that the SFKs have possible roles for regulation of mitochondrial protein synthesis and oxidative energy metabolism in animals.


Subject(s)
Mitochondrial Proteins , Peptide Elongation Factor Tu , Animals , Mice , Peptide Elongation Factor Tu/chemistry , Peptide Elongation Factor Tu/genetics , Peptide Elongation Factor Tu/metabolism , Phosphorylation , CSK Tyrosine-Protein Kinase , Mitochondrial Proteins/metabolism , Mammals/metabolism , Oxidative Phosphorylation , src-Family Kinases/metabolism , Proto-Oncogene Proteins c-fyn
2.
Cell Signal ; 72: 109651, 2020 08.
Article in English | MEDLINE | ID: mdl-32335258

ABSTRACT

Src family kinases (SFKs) play a crucial role in the regulation of multiple cellular pathways, including mitochondrial oxidative phosphorylation (OXPHOS). Aberrant activities of one of the most predominant SFKs, c-Src, was identified as a fundamental cause for dysfunctional cell signaling and implicated in cancer development and metastasis, especially in human hepatocellular carcinoma (HCC). Recent work in our laboratory revealed that c-Src is implicated in the regulation of mitochondrial energy metabolism in cancer. In this study, we investigated the effect of c-Src expression on mitochondrial energy metabolism by examining changes in the expression and activities of OXPHOS complexes in liver cancer biopsies and cell lines. An increased expression of c-Src was correlated with an impaired expression of nuclear- and mitochondrial-encoded subunits of OXPHOS complexes I and IV, respectively, in metastatic biopsies and cell lines. Additionally, we observed a similar association between high c-Src and reduced OXPHOS complex expression and activity in mouse embryonic fibroblast (MEF) cell lines. Interestingly, the inhibition of c-Src kinase activity with the SFK inhibitor PP2 and c-Src siRNA stimulated the expression of complex I and IV subunits and increased their enzymatic activities in both cancer and normal cells. Evidence provided in this study reveals that c-Src impairs the expression and function of mitochondrial OXPHOS complexes, resulting in a significant defect in mitochondrial energy metabolism, which can be a contributing factor to the development and progression of liver cancer. Furthermore, our findings strongly suggest that SFK inhibitors should be used in the treatment of HCC and other cancers with aberrant c-Src kinase activity to improve mitochondrial energy metabolism.


Subject(s)
Liver Neoplasms/metabolism , Mitochondria, Liver/metabolism , Oxidative Phosphorylation , src-Family Kinases/metabolism , Adolescent , Adult , Aged , Cell Line, Tumor , Fibroblasts/metabolism , Humans , Middle Aged , Neoplasm Metastasis , Protein Subunits/metabolism , Young Adult
4.
PLoS One ; 14(10): e0223983, 2019.
Article in English | MEDLINE | ID: mdl-31622427

ABSTRACT

There is variability as to how archaea catalyze the final step of de novo purine biosynthesis to form inosine 5'-monophosphate (IMP) from 5-formamidoimidazole-4-carboxamide ribonucleotide (FAICAR). Although non-archaea almost uniformly use the bifunctional PurH protein, which has an N-terminal IMP cyclohydrolase (PurH2) fused to a C-terminal folate-dependent aminoimidazole-4-carboxamide ribonucleotide (AICAR) formyltransferase (PurH1) domain, a survey of the genomes of archaea reveals use of PurH2 (with or without fusion to PurH1), the "euryarchaeal signature protein" PurO, or an unidentified crenarchaeal IMP cyclohydrolase. In this report, we present the cloning and functional characterization of two representatives of the known IMP cyclohydrolase families. The locus TK0430 in Thermococcus kodakarensis encodes a PurO-type IMP cyclohydrolase with demonstrated activity despite its position in a cluster of apparently redundant biosynthetic genes, the first functional characterization of a PurO from a non-methanogen. Kinetic characterization reveals a Km for FAICAR of 1.56 ± 0.39 µM and a kcat of 0.48 ± 0.04 s-1. The locus AF1811 from Archaeoglobus fulgidus encodes a PurH2-type IMP cyclohydrolase. This Archaeoglobus fulgidus PurH2 has a Km of 7.8 ± 1.8 µM and kcat of 1.32 ± 0.14 s-1, representing the first characterization of an archaeal PurH2 and the first characterization of PurH2 that naturally occurs unfused to an AICAR formyltransferase domain. Each of these two characterized IMP cyclohydrolases converts FAICAR to IMP in vitro, and each cloned gene allows the growth on purine-deficient media of an E. coli purine auxotroph lacking the purH2 gene.


Subject(s)
Archaea/enzymology , Cloning, Molecular/methods , IMP Dehydrogenase/genetics , Archaea/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Archaeoglobus fulgidus/enzymology , Archaeoglobus fulgidus/genetics , IMP Dehydrogenase/metabolism , Multigene Family , Ribonucleotides/metabolism , Thermococcus/enzymology , Thermococcus/genetics
5.
Int J Biochem Cell Biol ; 116: 105616, 2019 11.
Article in English | MEDLINE | ID: mdl-31542429

ABSTRACT

Type 2 diabetes has become an epidemic disease largely explained by the dramatic increase in obesity in recent years. Mitochondrial dysfunction is suggested as an underlying factor in obesity and type 2 diabetes. In this study, we evaluated changes in oxidative phosphorylation and mitochondrial biogenesis in a new human obesity and type 2 diabetes model, TALLYHO/Jng mice. We hypothesized that the sequence variants identified in the whole genome analysis of TALLYHO/Jng mice would affect oxidative phosphorylation and contribute to obesity and insulin resistant phenotypes. To test this hypothesis, we investigated differences in the expression and activity of oxidative phosphorylation complexes, including the transcription and translation of nuclear- and mitochondrial-encoded subunits and enzymatic activities, in the liver and kidney of TALLYHO/Jng and C57BL/6 J mice. A significant decrease was observed in the expression of nuclear- and mitochondrial-encoded subunits of complex I and IV, respectively, in TALLYHO/Jng mice, which coincided with significant reductions in their enzymatic activities. Furthermore, sequence variants were identified in oxidative phosphorylation complex subunits, a mitochondrial tRNA synthetase, and mitochondrial ribosomal proteins. Our data suggested that the lower expression and activity of oxidative phosphorylation complexes results in the diminished energy metabolism observed in TALLYHO/Jng mice. Sequence variants identified in mitochondrial proteins accentuated a defect in mitochondrial protein synthesis which also contributes to impaired biogenesis and oxidative phosphorylation in TALLYHO/Jng mice. These results demonstrated that the identification of factors contributing to mitochondrial dysfunction will allow us to improve the disease prognosis and treatment of obesity and type 2 diabetes in humans.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation , Mitochondria/metabolism , Obesity/metabolism , Oxidative Phosphorylation , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Disease Models, Animal , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Electron Transport Complex II/genetics , Electron Transport Complex II/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Humans , Insulin/metabolism , Insulin Resistance , Kidney/metabolism , Kidney/pathology , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/genetics , Obesity/genetics , Obesity/pathology , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
6.
Cell Reprogram ; 19(5): 311-323, 2017 10.
Article in English | MEDLINE | ID: mdl-28910138

ABSTRACT

Cancer cells exist in a state of Darwinian selection using mechanisms that produce changes in gene expression through genetic and epigenetic alteration to facilitate their survival. Cellular plasticity, or the ability to alter cellular phenotype, can assist in survival of premalignant cells as they progress to full malignancy by providing another mechanism of adaptation. The connection between cellular stress and the progression of cancer has been established, although the details of the mechanisms have yet to be fully elucidated. The molecular chaperone HSP90 is often upregulated in cancers as they progress, presumably to allow cancer cells to deal with misfolded proteins and cellular stress associated with transformation. The objective of this work is to test the hypothesis that inhibition of HSP90 results in increased cell plasticity in mammalian systems that can confer a greater adaptability to selective pressures. The approach used is a murine in vitro model system of hematopoietic differentiation that utilizes a murine hematopoietic stem cell line, erythroid myeloid lymphoid (EML) clone 1, during their maturation from stem cells to granulocytic progenitors. During the differentiation protocol, 80%-90% of the cells die when placed in medium where the major growth factor is granulocyte-macrophage-colony stimulating factor. Using this selection point model, EML cells exhibit increases in cellular plasticity when they are better able to adapt to this medium and survive. Increases in cellular plasticity were found to occur upon exposure to geldanamycin to inhibit HSP90, when subjected to various forms of cellular stress, or inhibition of histone acetylation. Furthermore, we provide evidence that the cellular plasticity associated with inhibition of HSP90 in this model involves epigenetic mechanisms and is dependent upon high levels of stem cell factor signaling. This work provides evidence for a role of HSP90 and cellular stress in inducing phenotypic plasticity in mammalian systems that has new implications for cellular stress in progression and evolution of cancer.


Subject(s)
Benzoquinones/pharmacology , Cell Differentiation/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Hematopoiesis/drug effects , Hematopoietic Stem Cells/metabolism , Lactams, Macrocyclic/pharmacology , Stress, Physiological/drug effects , Acetylation/drug effects , Animals , Epigenesis, Genetic/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , HSP90 Heat-Shock Proteins/metabolism , Hematopoietic Stem Cells/cytology , Histones/metabolism , Mice , Signal Transduction/drug effects , Stem Cell Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...