Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 12(4): e1005951, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27035832

ABSTRACT

Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.


Subject(s)
Drosophila melanogaster/genetics , Recombination, Genetic , Animals , Drosophila melanogaster/microbiology , Female , Genome-Wide Association Study , Male , Wolbachia/isolation & purification
2.
G3 (Bethesda) ; 6(5): 1409-16, 2016 05 03.
Article in English | MEDLINE | ID: mdl-26994290

ABSTRACT

Meiotic recombination is a genetic process that is critical for proper chromosome segregation in many organisms. Despite being fundamental for organismal fitness, rates of crossing over vary greatly between taxa. Both genetic and environmental factors contribute to phenotypic variation in crossover frequency, as do genotype-environment interactions. Here, we test the hypothesis that maternal age influences rates of crossing over in a genotypic-specific manner. Using classical genetic techniques, we estimated rates of crossing over for individual Drosophila melanogaster females from five strains over their lifetime from a single mating event. We find that both age and genetic background significantly contribute to observed variation in recombination frequency, as do genotype-age interactions. We further find differences in the effect of age on recombination frequency in the two genomic regions surveyed. Our results highlight the complexity of recombination rate variation and reveal a new role of genotype by maternal age interactions in mediating recombination rate.


Subject(s)
Crossing Over, Genetic , Drosophila melanogaster/genetics , Genetic Background , Models, Genetic , Animals , Female , Genetic Loci , Genome, Insect , Genomics/methods , Male , Meiosis/genetics , Recombination, Genetic
3.
Evolution ; 68(9): 2718-26, 2014 09.
Article in English | MEDLINE | ID: mdl-24889512

ABSTRACT

Meiotic recombination is a critical genetic process as well as a pivotal evolutionary force. Rates of crossing over are highly variable within and between species, due to both genetic and environmental factors. Early studies in Drosophila implicated female genetic background as a major determinant of crossover rate and recent work has highlighted male genetic background as a possible mediator as well. Our study employed classical genetics to address how female and male genetic backgrounds individually and jointly affect crossover rates. We measured rates of crossing over in a 33 cM region of the Drosophila melanogaster X chromosome using a two-step crossing scheme exploiting visible markers. In total, we measured crossover rates of 10 inbred lines in a full diallel cross. Our experimental design facilitates measuring the contributions of female genetic background, male genetic background, and female by male genetic background interaction effects on rates of crossing over in females. Our results indicate that although female genetic background significantly affects female meiotic crossover rates in Drosophila, male genetic background and the interaction of female and male genetic backgrounds have no significant effect. These findings thus suggest that male-mediated effects are unlikely to contribute greatly to variation in recombination rates in natural populations of Drosophila.


Subject(s)
Crossing Over, Genetic , Drosophila melanogaster/genetics , Meiosis , Recombination, Genetic , Animals , Female , Male , X Chromosome
SELECTION OF CITATIONS
SEARCH DETAIL
...