Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Comput Med Imaging Graph ; 49: 29-36, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26878137

ABSTRACT

The objective of this study was to develop a quantitative image feature model to predict non-small cell lung cancer (NSCLC) volume shrinkage from pre-treatment CT images. 64 stage II-IIIB NSCLC patients with similar treatments were all imaged using the same CT scanner and protocol. For each patient, the planning gross tumor volume (GTV) was deformed onto the week 6 treatment image, and tumor shrinkage was quantified as the deformed GTV volume divided by the planning GTV volume. Geometric, intensity histogram, absolute gradient image, co-occurrence matrix, and run-length matrix image features were extracted from each planning GTV. Prediction models were generated using principal component regression with simulated annealing subset selection. Performance was quantified using the mean squared error (MSE) between the predicted and observed tumor shrinkages. Permutation tests were used to validate the results. The optimal prediction model gave a strong correlation between the observed and predicted tumor shrinkages with r=0.81 and MSE=8.60×10(-3). Compared to predictions based on the mean population shrinkage this resulted in a 2.92 fold reduction in MSE. In conclusion, this study indicated that quantitative image features extracted from existing pre-treatment CT images can successfully predict tumor shrinkage and provide additional information for clinical decisions regarding patient risk stratification, treatment, and prognosis.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiotherapy, Image-Guided/methods , Tomography, X-Ray Computed/methods , Algorithms , Humans , Pattern Recognition, Automated/methods , Prognosis , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity , Subtraction Technique , Treatment Outcome , Tumor Burden
2.
Med Phys ; 42(3): 1341-53, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25735289

ABSTRACT

PURPOSE: Radiomics, which is the high-throughput extraction and analysis of quantitative image features, has been shown to have considerable potential to quantify the tumor phenotype. However, at present, a lack of software infrastructure has impeded the development of radiomics and its applications. Therefore, the authors developed the imaging biomarker explorer (IBEX), an open infrastructure software platform that flexibly supports common radiomics workflow tasks such as multimodality image data import and review, development of feature extraction algorithms, model validation, and consistent data sharing among multiple institutions. METHODS: The IBEX software package was developed using the MATLAB and c/c++ programming languages. The software architecture deploys the modern model-view-controller, unit testing, and function handle programming concepts to isolate each quantitative imaging analysis task, to validate if their relevant data and algorithms are fit for use, and to plug in new modules. On one hand, IBEX is self-contained and ready to use: it has implemented common data importers, common image filters, and common feature extraction algorithms. On the other hand, IBEX provides an integrated development environment on top of MATLAB and c/c++, so users are not limited to its built-in functions. In the IBEX developer studio, users can plug in, debug, and test new algorithms, extending IBEX's functionality. IBEX also supports quality assurance for data and feature algorithms: image data, regions of interest, and feature algorithm-related data can be reviewed, validated, and/or modified. More importantly, two key elements in collaborative workflows, the consistency of data sharing and the reproducibility of calculation result, are embedded in the IBEX workflow: image data, feature algorithms, and model validation including newly developed ones from different users can be easily and consistently shared so that results can be more easily reproduced between institutions. RESULTS: Researchers with a variety of technical skill levels, including radiation oncologists, physicists, and computer scientists, have found the IBEX software to be intuitive, powerful, and easy to use. IBEX can be run at any computer with the windows operating system and 1GB RAM. The authors fully validated the implementation of all importers, preprocessing algorithms, and feature extraction algorithms. Windows version 1.0 beta of stand-alone IBEX and IBEX's source code can be downloaded. CONCLUSIONS: The authors successfully implemented IBEX, an open infrastructure software platform that streamlines common radiomics workflow tasks. Its transparency, flexibility, and portability can greatly accelerate the pace of radiomics research and pave the way toward successful clinical translation.


Subject(s)
Cooperative Behavior , Image Processing, Computer-Assisted/methods , Software , Algorithms , Humans , Models, Theoretical , Positron-Emission Tomography , Reproducibility of Results , Tomography, X-Ray Computed
3.
Med Phys ; 40(12): 121916, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24320527

ABSTRACT

PURPOSE: For nonsmall cell lung cancer (NSCLC) patients, quantitative image features extracted from computed tomography (CT) images can be used to improve tumor diagnosis, staging, and response assessment. For these findings to be clinically applied, image features need to have high intra and intermachine reproducibility. The objective of this study is to identify CT image features that are reproducible, nonredundant, and informative across multiple machines. METHODS: Noncontrast-enhanced, test-retest CT image pairs were obtained from 56 NSCLC patients imaged on three CT machines from two institutions. Two machines ("M1" and "M2") used cine 4D-CT and one machine ("M3") used breath-hold helical 3D-CT. Gross tumor volumes (GTVs) were semiautonomously segmented then pruned by removing voxels with CT numbers less than a prescribed Hounsfield unit (HU) cutoff. Three hundred and twenty eight quantitative image features were extracted from each pruned GTV based on its geometry, intensity histogram, absolute gradient image, co-occurrence matrix, and run-length matrix. For each machine, features with concordance correlation coefficient values greater than 0.90 were considered reproducible. The Dice similarity coefficient (DSC) and the Jaccard index (JI) were used to quantify reproducible feature set agreement between machines. Multimachine reproducible feature sets were created by taking the intersection of individual machine reproducible feature sets. Redundant features were removed through hierarchical clustering based on the average correlation between features across multiple machines. RESULTS: For all image types, GTV pruning was found to negatively affect reproducibility (reported results use no HU cutoff). The reproducible feature percentage was highest for average images (M1 = 90.5%, M2 = 94.5%, M1∩M2 = 86.3%), intermediate for end-exhale images (M1 = 75.0%, M2 = 71.0%, M1∩M2 = 52.1%), and lowest for breath-hold images (M3 = 61.0%). Between M1 and M2, the reproducible feature sets generated from end-exhale images were relatively machine-sensitive (DSC = 0.71, JI = 0.55), and the reproducible feature sets generated from average images were relatively machine-insensitive (DSC = 0.90, JI = 0.87). Histograms of feature pair correlation distances indicated that feature redundancy was machine-sensitive and image type sensitive. After hierarchical clustering, 38 features, 28 features, and 33 features were found to be reproducible and nonredundant for M1∩M2 (average images), M1∩M2 (end-exhale images), and M3, respectively. When blinded to the presence of test-retest images, hierarchical clustering showed that the selected features were informative by correctly pairing 55 out of 56 test-retest images using only their reproducible, nonredundant feature set values. CONCLUSIONS: Image feature reproducibility and redundancy depended on both the CT machine and the CT image type. For each image type, the authors found a set of cross-machine reproducible, nonredundant, and informative image features that would be useful for future image-based models. Compared to end-exhale 4D-CT and breath-hold 3D-CT, average 4D-CT derived image features showed superior multimachine reproducibility and are the best candidates for clinical correlation.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Four-Dimensional Computed Tomography , Image Processing, Computer-Assisted/methods , Lung Neoplasms/diagnostic imaging , Tomography, Spiral Computed , Humans , Reproducibility of Results , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...