Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 11(13): 8542-8561, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34257915

ABSTRACT

Phenotypic variability results from interactions between genotype and environment and is a major driver of ecological and evolutionary interactions. Measuring the relative contributions of genetic variation, the environment, and their interaction to phenotypic variation remains a fundamental goal of evolutionary ecology.In this study, we assess the question: How do genetic variation and local environmental conditions interact to influence phenotype within a single population? We explored this question using seed from a single population of common milkweed, Asclepias syriaca, in northern Michigan. We first measured resistance and resistance traits of 14 maternal lines in two common garden experiments (field and greenhouse) to detect genetic variation within the population. We carried out a reciprocal transplant experiment with three of these maternal lines to assess effects of local environment on phenotype. Finally, we compared the phenotypic traits measured in our experiments with the phenotypic traits of the naturally growing maternal genets to be able to compare relative effect of genetic and environmental variation on naturally occurring phenotypic variation. We measured defoliation levels, arthropod abundances, foliar cardenolide concentrations, foliar latex exudation, foliar carbon and nitrogen concentrations, and plant growth.We found a striking lack of correlation in trait expression of the maternal lines between the common gardens, or between the common gardens and the naturally growing maternal genets, suggesting that environment plays a larger role in phenotypic trait variation of this population. We found evidence of significant genotype-by-environment interactions for all traits except foliar concentrations of nitrogen and cardenolide. Milkweed resistance to chewing herbivores was associated more strongly with the growing environment. We observed no variation in foliar cardenolide concentrations among maternal lines but did observe variation among maternal lines in foliar latex exudation.Overall, our data reveal powerful genotype-by-environment interactions on the expression of most resistance traits in milkweed.

2.
J Anim Ecol ; 90(5): 1341-1352, 2021 05.
Article in English | MEDLINE | ID: mdl-33656786

ABSTRACT

Interactions between herbivores and their predators are shaped, in part, by plant phenotype. Consequently, ubiquitous symbionts of plants below-ground, such as arbuscular mycorrhizal fungi (AMF), may influence interactions above-ground between predators and their prey by altering plant phenotype. However, the ecological relevance of below-ground organisms on predator-prey interactions under field conditions remains unclear. We assessed how AMF influence herbivore-predator interactions through a field experiment. We planted two milkweed species (Asclepias curassavica and Asclepias incarnata) provided with different amounts of AMF inoculum (zero, medium, and high) in a randomized block design. We added aphids to plants and reduced predator pressure weekly for 5 weeks to evaluate effects of AMF on predator recruitment. We then allowed herbivore-predator interactions to re-establish naturally for the remainder of the season to examine whether AMF-mediated variation in predator recruitment influenced the suppression of aphid populations. Arbuscular mycorrhizal fungi availability in soils mediated interactions between predaceous aphid midge flies Aphidoletes aphidimyza and their aphid prey Aphis nerii, but the effects were plant species-specific. On A. curassavica, by mid-season, midges were recruited most strongly on plants under medium AMF availability and least on plants under high AMF availability. In contrast, each midge killed fewer aphids with increasing aphid density on medium AMF plants, but killed more aphids with increasing aphid density on high AMF plants. In combination, aphid mortality rates imposed by midges were greatest on medium AMF plants, followed by high and zero AMF plants. By comparison, on A. incarnata, the recruitment of midges was strongest on high AMF plants and weakest on medium AMF plants. AMF had no effect on the number of aphids killed per midge, relative to aphid density, so mortality rates of aphids imposed by midges mirrored recruitment. Rates of decline in aphid populations following predator recolonization were associated with midge densities, as well as lacewing and syrphid densities, which were unaffected by AMF availability. Therefore, the effects of AMF on aphid population decline were not a simple function of AMF-midge interactions. Our findings demonstrate that the availability of AMF in soils has pervasive, but complex, effects on predator-herbivore dynamics in the field.


Subject(s)
Aphids , Asclepias , Mycorrhizae , Animals , Herbivory , Plants
3.
J Anim Ecol ; 90(3): 628-640, 2021 03.
Article in English | MEDLINE | ID: mdl-33241571

ABSTRACT

Animals rely on a balance of endogenous and exogenous sources of immunity to mitigate parasite attack. Understanding how environmental context affects that balance is increasingly urgent under rapid environmental change. In herbivores, immunity is determined, in part, by phytochemistry which is plastic in response to environmental conditions. Monarch butterflies Danaus plexippus, consistently experience infection by a virulent parasite Ophryocystis elektroscirrha, and some medicinal milkweed (Asclepias) species, with high concentrations of toxic steroids (cardenolides), provide a potent source of exogenous immunity. We investigated plant-mediated influences of elevated CO2 (eCO2 ) on endogenous immune responses of monarch larvae to infection by O. elektroscirrha. Recently, transcriptomics have revealed that infection by O. elektroscirrha does not alter monarch immune gene regulation in larvae, corroborating that monarchs rely more on exogenous than endogenous immunity. However, monarchs feeding on medicinal milkweed grown under eCO2 lose tolerance to the parasite, associated with changes in phytochemistry. Whether changes in milkweed phytochemistry induced by eCO2 alter the balance between exogenous and endogenous sources of immunity remains unknown. We fed monarchs two species of milkweed; A. curassavica (medicinal) and A. incarnata (non-medicinal) grown under ambient CO2 (aCO2 ) or eCO2 . We then measured endogenous immune responses (phenoloxidase activity, haemocyte concentration and melanization strength), along with foliar chemistry, to assess mechanisms of monarch immunity under future atmospheric conditions. The melanization response of late-instar larvae was reduced on medicinal milkweed in comparison to non-medicinal milkweed. Moreover, the endogenous immune responses of early-instar larvae to infection by O. elektroscirrha were generally lower in larvae reared on foliage from aCO2 plants and higher in larvae reared on foliage from eCO2 plants. When grown under eCO2 , milkweed plants exhibited lower cardenolide concentrations, lower phytochemical diversity and lower nutritional quality (higher C:N ratios). Together, these results suggest that the loss of exogenous immunity from foliage under eCO2 results in increased endogenous immune function. Animal populations face multiple threats induced by anthropogenic environmental change. Our results suggest that shifts in the balance between exogenous and endogenous sources of immunity to parasite attack may represent an underappreciated consequence of environmental change.


Subject(s)
Asclepias , Butterflies , Animals , Carbon Dioxide , Herbivory , Host-Parasite Interactions , Immunity
4.
Ecol Evol ; 10(12): 5416-5430, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607163

ABSTRACT

To understand how comprehensive plant defense phenotypes will respond to global change, we investigated the legacy effects of elevated CO2 on the relationships between chemical resistance (constitutive and induced via mechanical damage) and regrowth tolerance in four milkweed species (Asclepias). We quantified potential resistance and tolerance trade-offs at the physiological level following simulated mowing, which are relevant to milkweed ecology and conservation. We examined the legacy effects of elevated CO2 on four hypothesized trade-offs between the following: (a) plant growth rate and constitutive chemical resistance (foliar cardenolide concentrations), (b) plant growth rate and mechanically induced chemical resistance, (c) constitutive resistance and regrowth tolerance, and (d) regrowth tolerance and mechanically induced resistance. We observed support for one trade-off between plant regrowth tolerance and mechanically induced resistance traits that was, surprisingly, independent of CO2 exposure. Across milkweed species, mechanically induced resistance increased by 28% in those plants previously exposed to elevated CO2. In contrast, constitutive resistance and the diversity of mechanically induced chemical resistance traits declined in response to elevated CO2 in two out of four milkweed species. Finally, previous exposure to elevated CO2 uncoupled the positive relationship between plant growth rate and regrowth tolerance following damage. Our data highlight the complex and dynamic nature of plant defense phenotypes under environmental change and question the generality of physiologically based defense trade-offs.

5.
Mol Ecol ; 28(22): 4845-4863, 2019 11.
Article in English | MEDLINE | ID: mdl-31483077

ABSTRACT

Herbivorous insects have evolved many mechanisms to overcome plant chemical defences, including detoxification and sequestration. Herbivores may also use toxic plants to reduce parasite infection. Plant toxins could directly interfere with parasites or could enhance endogenous immunity. Alternatively, plant toxins could favour down-regulation of endogenous immunity by providing an alternative (exogenous) defence against parasitism. However, studies on genomewide transcriptomic responses to plant defences and the interplay between plant toxicity and parasite infection remain rare. Monarch butterflies (Danaus plexippus) are specialist herbivores of milkweeds (Asclepias spp.), which contain toxic cardenolides. Monarchs have adapted to cardenolides through multiple resistance mechanisms and can sequester cardenolides to defend against bird predators. In addition, high-cardenolide milkweeds confer monarch resistance to a specialist protozoan parasite (Ophryocystis elektroscirrha). We used this system to study the interplay between the effects of plant toxicity and parasite infection on global gene expression. We compared transcriptional profiles between parasite-infected and uninfected monarch larvae reared on two milkweed species. Our results demonstrate that monarch differentially express several hundred genes when feeding on A. curassavica and A. incarnata, two species that differ substantially in cardenolide concentrations. These differentially expressed genes include genes within multiple families of canonical insect detoxification genes, suggesting that they play a role in monarch toxin resistance and sequestration. Interestingly, we found little transcriptional response to infection. However, parasite growth was reduced in monarchs reared on A. curassavica, and in these monarchs, several immune genes were down-regulated, consistent with the hypothesis that medicinal plants can reduce reliance on endogenous immunity.


Subject(s)
Butterflies/genetics , Down-Regulation/genetics , Host-Parasite Interactions/genetics , Plants, Toxic/parasitology , Transcriptome/genetics , Animals , Apicomplexa/genetics , Asclepias/parasitology , Cardenolides , Herbivory/genetics , Larva/genetics , Parasites/genetics
6.
J Chem Ecol ; 45(7): 610-625, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31281942

ABSTRACT

Plants use volatile organic compounds (VOCs) to cue natural enemies to their herbivore prey on plants. Simultaneously, herbivores utilize volatile cues to identify appropriate hosts. Despite extensive efforts to understand sources of variation in plant communication by VOCs, we lack an understanding of how ubiquitous belowground mutualists, such as arbuscular mycorrhizal fungi (AMF), influence plant VOC emissions. In a full factorial experiment, we subjected plants of two milkweed (Asclepias) species under three levels of AMF availability to damage by aphids (Aphis nerii). We then measured plant headspace volatiles and chemical defenses (cardenolides) and compared these to VOCs emitted and cardenolides produced by plants without herbivores. We found that AMF have plant species-specific effects on constitutive and aphid-induced VOC emissions. High AMF availability increased emissions of total VOCs, two green leaf volatiles (3-hexenyl acetate and hexyl acetate), and methyl salicylate in A. curassavica, but did not affect emissions in A. incarnata. In contrast, aphids consistently increased emissions of 6-methyl-5-hepten-2-one and benzeneacetaldehyde in both species, independent of AMF availability. Both high AMF availability and aphids alone suppressed emissions of individual terpenes. However, aphid damage on plants under high AMF availability increased, or did not affect, emissions of those terpenes. Lastly, aphid feeding suppressed cardenolide concentrations only in A. curassavica, and AMF did not affect cardenolides in either plant species. Our findings suggest that by altering milkweed VOC profiles, AMF may affect both herbivore performance and natural enemy attraction.


Subject(s)
Aphids/physiology , Asclepias/chemistry , Mycorrhizae/physiology , Volatile Organic Compounds/analysis , Animals , Asclepias/metabolism , Asclepias/parasitology , Cardenolides/analysis , Gas Chromatography-Mass Spectrometry , Herbivory , Host Microbial Interactions , Host-Parasite Interactions , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/parasitology , Principal Component Analysis
7.
Curr Opin Insect Sci ; 33: 1-6, 2019 06.
Article in English | MEDLINE | ID: mdl-31358187

ABSTRACT

Studies have demonstrated that medication behaviors by insects are much more common than previously thought. Bees, ants, flies, and butterflies can use a wide range of toxic and nutritional compounds to medicate themselves or their genetic kin. Medication occurs either in response to active infection (therapy) or high infection risk (prophylaxis), and can be used to increase resistance or tolerance to infection. While much progress has been made over the last few years, there are also key areas that require in-depth investigation. These include quantifying the costs of medication, especially at the colony level of social insects, and formulating theoretical models that can predict the role of infection risk in driving micro-evolutionary and macro-evolutionary patterns of animal medication behaviors.


Subject(s)
Food Preferences , Insecta/microbiology , Insecta/parasitology , Animals , Behavior, Animal , Feeding Behavior , Host-Parasite Interactions , Insecta/physiology , Plants/chemistry
8.
J Agric Food Chem ; 67(26): 7530-7537, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31184878

ABSTRACT

We developed and applied a fully automated portable gas chromatography (GC) device for rapid and in situ analysis of plant volatile organic compounds (VOCs) to examine plant health status. A total of 42 emission samples were collected over a period of 5 days from 10 milkweed ( Asclepias syriaca) plants, half of which were infested by aphids. Thirty-five VOC peaks were separated and detected in 8 min. An algorithm based on machine learning, principal component analysis, and linear discriminant analysis was developed to evaluate the GC results. We found that our device and algorithm are able to distinguish between the undamaged control and the aphid-infested milkweeds with an overall accuracy of 90-100% within 48-72 h of the attack. Such rapid in situ detection of insect attack attests to the great potential of VOC monitoring in plant health management.


Subject(s)
Asclepias/chemistry , Chromatography, Gas/methods , Plant Diseases/parasitology , Volatile Organic Compounds/chemistry , Animals , Aphids/physiology , Asclepias/parasitology
9.
Proc Biol Sci ; 286(1894): 20182231, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30963882

ABSTRACT

Diets must satisfy the everyday metabolic requirements of organisms and can also serve as medicines to combat disease. Currently, the medicinal role of diets is much better understood in terrestrial than in aquatic ecosystems. This is surprising because phytoplankton species synthesize secondary metabolites with known antimicrobial properties. Here, we investigated the medicinal properties of phytoplankton (including toxin-producing cyanobacteria) against parasites of the dominant freshwater herbivore, Daphnia. We fed Daphnia dentifera on green algae and toxic cyanobacteria diets known to vary in their nutritional quality and toxin production, and an additional diet of Microcystis with added pure microcystin-LR. We then exposed Daphnia to fungal and bacterial parasites. Anabaena, Microcystis and Chlorella diets prevented infection of Daphnia by the fungal parasite Metschnikowia, while Nodularia toxins increased offspring production by infected hosts. In contrast to their medicinal effects against Metschnikowia, toxic phytoplankton generally decreased the fitness of Daphnia infected with the bacterial parasite, Pasteuria. We also measured the amount of toxin produced by phytoplankton over time. Concentrations of anatoxin-a produced by Anabaena increased in the presence of Metschnikowia, suggesting parasite-induced toxin production. Our research illustrates that phytoplankton can serve as toxins or medicines for their consumers, depending upon the identity of their parasites.


Subject(s)
Daphnia/physiology , Daphnia/parasitology , Genetic Fitness , Host-Parasite Interactions , Phytoplankton , Animals , Chlorophyta/chemistry , Cyanobacteria/chemistry , Diet , Fungi/physiology
10.
Sci Total Environ ; 673: 237-244, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-30991315

ABSTRACT

Intraspecific diversity buffers populations from deleterious impacts of environmental change. Nevertheless, the consequences of climate warming for phenotypic and genetic diversity within populations and species remain poorly understood. The goal of our study was to explore among-year variations in the phenotypic structure of populations and their relationships with climate variability and population dynamics. We analysed multiyear (1992-2018) data on colour morph frequencies within populations of the leaf beetle, Chrysomela lapponica, from multiple sites in the Kola Peninsula (northwestern Russia). We observed a strong decline in the proportion of dark (melanic) morphs among overwintered beetles during the study period; this decline was consistent across all study sites. Using model selection procedures, we explained declines in the dark morph of overwintered beetles by increases in minimum spring (May-June) daily temperatures. Other climatic characteristics, pollution load, and beetle population density were unrelated to variation in colour morph frequencies. Among newly emerged beetles (August), dark morph frequencies also decreased with an increase in average spring temperatures, but were unrelated to mean temperatures during the larval development period (July). These results suggest that the two-fold decline in dark morph frequencies during the past 26 years has been driven by the 2.5 °C increase in spring temperatures, most likely because dark males lose the mating advantages over light males that they obtain during cold springs. The continued loss of dark morphs and related decrease in within-population diversity may render leaf beetle populations more vulnerable to future environmental changes, in particular to those expressed in extreme weather fluctuations. Our study demonstrates that declines in within-population diversity are already underway in subarctic areas, and that these declines are likely driven by climate warming.


Subject(s)
Climate Change , Coleoptera/physiology , Global Warming , Melanins/analysis , Animals , Color , Environmental Monitoring , Population Dynamics , Russia
11.
J Anim Ecol ; 88(5): 665-676, 2019 05.
Article in English | MEDLINE | ID: mdl-30471097

ABSTRACT

Animal populations vary in response to a combination of density-dependent and density-independent forces, which interact to drive their population dynamics. Understanding how abiotic forces mediate the form and strength of density-dependent processes remains a central goal of ecology, and is of increasing urgency in a rapidly changing world. Here, we report for the first time that industrial pollution determines the relative strength of rapid and delayed density dependence operating on an animal population. We explored the impacts of pollution and climate on the population dynamics of an eruptive leafmining moth, Phyllonorycter strigulatella, around a coal-fired power plant near Apatity, north-western Russia. Populations were monitored at 14 sites over 26 years. The relative strengths of rapid and delayed density dependence varied with distance from the power plant. Specifically, the strength of rapid density dependence increased while the strength of delayed density dependence decreased with increasing distance from the pollution source. Paralleling the increasing strength of rapid density dependence, we observed declines in the densities of P. strigulatella, increases in predation pressure from birds and ants, and declines in an unknown source of mortality (perhaps plant antibiosis) with increasing distance from the power plant. In contrast to the associations with pollution, associations between climate change and leafminer population densities were negligible. Our results may help to explain the outbreaks of insect herbivores that are frequently observed in polluted environments. We show that they can result from the weakening of rapid (stabilizing) density dependence relative to the effects of destabilizing delayed density dependence. Moreover, our results may explain some of the variation reported in published studies of animal populations in polluted habitats. Variable results may emerge in part because of the location of the study sites on different parts of pollution gradients. Finally, in a rapidly changing world, effects of anthropogenic pollution may be as, or more, important than are effects of climate change on the future dynamics of animal populations.


Subject(s)
Climate Change , Herbivory , Animals , Population Density , Population Dynamics , Russia
12.
Ecol Evol ; 8(20): 10257-10265, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30397463

ABSTRACT

Social environment profoundly influences the fitness of animals, affecting their probability of survival to adulthood, longevity, and reproductive output. The social conditions experienced by parents at the time of reproduction can predict the social environments that offspring will face. Despite clear challenges in predicting future environmental conditions, adaptive maternal effects provide a mechanism of passing environmental information from parent to offspring and are now considered pervasive in natural systems. Maternal effects have been widely studied in vertebrates, especially in the context of social environment, and are often mediated by steroid hormone (SH) deposition to eggs. In insects, although many species dramatically alter phenotype and life-history traits in response to social density, the mechanisms of these alterations, and the role of hormone deposition by insect mothers into their eggs, remains unknown. In the experiments described here, we assess the effects of social environment on maternal hormone deposition to eggs in house crickets (Acheta domesticus). Specifically, we tested the hypotheses that variable deposition of ecdysteroid hormones (ESH) to eggs is affected by both maternal (a) social density and (b) social composition. We found that while maternal hormone deposition to eggs does not respond to social composition (sex ratio), it does reflect social density; females provision their eggs with higher ESH doses under low-density conditions. This finding is consistent with the interpretation that variable ESH provisioning is an adaptive maternal response to social environment and congruent with similar patterns of variable maternal provisioning across the tree of life. Moreover, our results confirm that maternal hormone provisioning may mediate delayed density dependence by introducing a time lag in the response of offspring phenotype to population size.

13.
J Chem Ecol ; 44(11): 1040-1044, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30123937

ABSTRACT

Many plants express induced defenses against herbivores through increasing the production of toxic secondary chemicals following damage. Phytochemical induction can directly or indirectly affect other organisms within the community. In tri-trophic systems, increased concentrations of plant toxins could be detrimental to plants if herbivores can sequester these toxins as protective chemicals for themselves. Thus, through trophic interactions, induction can lead to either positive or negative effects on plant fitness. We examined the effects of milkweed (Asclepias spp.) induced defenses on the resistance of monarch caterpillars (Danaus plexippus) to a protozoan parasite (Ophryocystis elektroscirrha). Milkweeds contain toxic secondary chemicals called cardenolides, higher concentrations of which are associated with reduced parasite growth. Previous work showed that declines in foliar cardenolides caused by aphid attack render monarch caterpillars more susceptible to infection. Here, we ask whether cardenolide induction by monarchs increases monarch resistance to disease. We subjected the high-cardenolide milkweed A. curassavica and the low-cardenolide A. syriaca to caterpillar grazing, and reared infected and uninfected caterpillars on these plants. As expected, monarchs suffered less parasite growth and disease when reared on A. curassavica than on A. syriaca. We also found that herbivory increased cardenolide concentrations in A. curassavica, but not A. syriaca. However, cardenolide induction in A. curassavica was insufficient to influence monarch resistance to the parasite. Our results suggest that interspecific variation in cardenolide concentration is a more important driver of parasite defense than plasticity via induced defenses in this tri-trophic system.


Subject(s)
Asclepias/chemistry , Butterflies/growth & development , Animals , Asclepias/metabolism , Asclepias/parasitology , Butterflies/physiology , Cardenolides/chemistry , Cardenolides/isolation & purification , Cardenolides/pharmacology , Chromatography, High Pressure Liquid , Herbivory/drug effects , Host-Parasite Interactions , Larva/drug effects , Larva/growth & development , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/parasitology
14.
Ecol Lett ; 21(9): 1353-1363, 2018 09.
Article in English | MEDLINE | ID: mdl-30134036

ABSTRACT

Hosts combat their parasites using mechanisms of resistance and tolerance, which together determine parasite virulence. Environmental factors, including diet, mediate the impact of parasites on hosts, with diet providing nutritional and medicinal properties. Here, we present the first evidence that ongoing environmental change decreases host tolerance and increases parasite virulence through a loss of dietary medicinal quality. Monarch butterflies use dietary toxins (cardenolides) to reduce the deleterious impacts of a protozoan parasite. We fed monarch larvae foliage from four milkweed species grown under either elevated or ambient CO2 , and measured changes in resistance, tolerance, and virulence. The most high-cardenolide milkweed species lost its medicinal properties under elevated CO2 ; monarch tolerance to infection decreased, and parasite virulence increased. Declines in medicinal quality were associated with declines in foliar concentrations of lipophilic cardenolides. Our results emphasize that global environmental change may influence parasite-host interactions through changes in the medicinal properties of plants.


Subject(s)
Asclepias , Butterflies , Parasites , Animals , Carbon Dioxide , Virulence
15.
Ecol Lett ; 21(11): 1670-1680, 2018 11.
Article in English | MEDLINE | ID: mdl-30152196

ABSTRACT

Environmental change induces some wildlife populations to shift from migratory to resident behaviours. Newly formed resident populations could influence the health and behaviour of remaining migrants. We investigated migrant-resident interactions among monarch butterflies and consequences for life history and parasitism. Eastern North American monarchs migrate annually to Mexico, but some now breed year-round on exotic milkweed in the southern US and experience high infection prevalence of protozoan parasites. Using stable isotopes (δ2 H, δ13 C) and cardenolide profiles to estimate natal origins, we show that migrant and resident monarchs overlap during fall and spring migration. Migrants at sites with residents were 13 times more likely to have infections and three times more likely to be reproductive (outside normal breeding season) compared to other migrants. Exotic milkweed might either attract migrants that are already infected or reproductive, or alternatively, induce these states. Increased migrant-resident interactions could affect monarch parasitism, migratory success and long-term conservation.


Subject(s)
Animal Migration , Asclepias , Butterflies , Parasitic Diseases , Animals , Butterflies/parasitology , Seasons
16.
J Insect Physiol ; 109: 69-78, 2018.
Article in English | MEDLINE | ID: mdl-29890170

ABSTRACT

An animal's phenotype may be shaped by its genes, but also reflects its own environment and often that of its parents. Nongenetic parental effects are often mediated by steroid hormones, and operate between parents and offspring through mechanisms that are well described in vertebrate and model systems. However, less is understood about the strength and frequency of hormone mediated nongenetic parental effects across more than one generation of descendants, and in nonmodel systems. Here we show that the concentration of active ecdysteroid hormones provided by a female house cricket (Acheta domesticus) affects the growth rate of her offspring. We also reveal that variation in the active ecdysteroid hormones provided by a female house cricket to her eggs derives primarily from the quality of nutrition available to her maternal grandmother, regardless of genetic background. This finding is in stark contrast to most previous work that documents a decline in the strength of environmentally based parental effects with each passing generation. Strong grandparental effects may be adaptive under predictable, cyclical changes in the environment. Our results also suggest that hormone-mediated grand-maternal effects represent an important potential mechanism by which organisms can respond to environmental variability, and that further study of hormone-mediated carryover effects in this context could be profitable.


Subject(s)
Animal Nutritional Physiological Phenomena , Ecdysterone/pharmacology , Gryllidae/physiology , Animal Feed/analysis , Animals , Diet/veterinary , Female , Gryllidae/drug effects , Gryllidae/growth & development , Maternal Inheritance , Phenotype
17.
Ecology ; 99(5): 1031-1038, 2018 05.
Article in English | MEDLINE | ID: mdl-29618170

ABSTRACT

While it is well established that climate change affects species distributions and abundances, the impacts of climate change on species interactions has not been extensively studied. This is particularly important for specialists whose interactions are tightly linked, such as between the monarch butterfly (Danaus plexippus) and the plant genus Asclepias, on which it depends. We used open-top chambers (OTCs) to increase temperatures in experimental plots and placed either nonnative Asclepias curassavica or native A. incarnata in each plot along with monarch larvae. We found, under current climatic conditions, adult monarchs had higher survival and mass when feeding on A. curassavica. However, under future conditions, monarchs fared much worse on A. curassavica. The decrease in adult survival and mass was associated with increasing cardenolide concentrations under warmer temperatures. Increased temperatures alone reduced monarch forewing length. Cardenolide concentrations in A. curassavica may have transitioned from beneficial to detrimental as temperature increased. Thus, the increasing cardenolide concentrations may have pushed the larvae over a tipping point into an ecological trap; whereby past environmental cues associated with increased fitness give misleading information. Given the ubiquity of specialist plant-herbivore interactions, the potential for such ecological traps to emerge as temperatures increase may have far-reaching consequences.


Subject(s)
Asclepias , Butterflies , Animals , Cardenolides , Climate Change , Ecology
18.
J Parasitol ; 103(3): 228-236, 2017 06.
Article in English | MEDLINE | ID: mdl-28323544

ABSTRACT

Understanding host-parasite interactions is essential for ecological research, wildlife conservation, and health management. While most studies focus on numerical traits of parasite groups, such as changes in parasite load, less focus is placed on the traits of individual parasites such as parasite size and shape (parasite morphology). Parasite morphology has significant effects on parasite fitness such as initial colonization of hosts, avoidance of host immune defenses, and the availability of resources for parasite replication. As such, understanding factors that affect parasite morphology is important in predicting the consequences of host-parasite interactions. Here, we studied how host diet affected the spore morphology of a protozoan parasite ( Ophryocystis elektroscirrha ), a specialist parasite of the monarch butterfly ( Danaus plexippus ). We found that different host plant species (milkweeds; Asclepias spp.) significantly affected parasite spore size. Previous studies have found that cardenolides, secondary chemicals in host plants of monarchs, can reduce parasite loads and increase the lifespan of infected butterflies. Adding to this benefit of high cardenolide milkweeds, we found that infected monarchs reared on milkweeds of higher cardenolide concentrations yielded smaller parasites, a potentially hidden characteristic of cardenolides that may have important implications for monarch-parasite interactions.


Subject(s)
Apicomplexa/ultrastructure , Butterflies/parasitology , Animals , Apicomplexa/growth & development , Asclepias/chemistry , Butterflies/physiology , Cardenolides/metabolism , Diet , Female , Host-Parasite Interactions , Male , Spores, Protozoan/ultrastructure
19.
J Anim Ecol ; 85(5): 1246-54, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27286503

ABSTRACT

The emerging field of ecological immunology demonstrates that allocation by hosts to immune defence against parasites is constrained by the costs of those defences. However, the costs of non-immunological defences, which are important alternatives to canonical immune systems, are less well characterized. Estimating such costs is essential for our understanding of the ecology and evolution of alternative host defence strategies. Many animals have evolved medication behaviours, whereby they use antiparasitic compounds from their environment to protect themselves or their kin from parasitism. Documenting the costs of medication behaviours is complicated by natural variation in the medicinal components of diets and their covariance with other dietary components, such as macronutrients. In the current study, we explore the costs of the usage of antiparasitic compounds in monarch butterflies (Danaus plexippus), using natural variation in concentrations of antiparasitic compounds among plants. Upon infection by their specialist protozoan parasite Ophryocystis elektroscirrha, monarch butterflies can selectively oviposit on milkweed with high foliar concentrations of cardenolides, secondary chemicals that reduce parasite growth. Here, we show that these antiparasitic cardenolides can also impose significant costs on both uninfected and infected butterflies. Among eight milkweed species that vary substantially in their foliar cardenolide concentration and composition, we observed the opposing effects of cardenolides on monarch fitness traits. While high foliar cardenolide concentrations increased the tolerance of monarch butterflies to infection, they reduced the survival rate of caterpillars to adulthood. Additionally, although non-polar cardenolide compounds decreased the spore load of infected butterflies, they also reduced the life span of uninfected butterflies, resulting in a hump-shaped curve between cardenolide non-polarity and the life span of infected butterflies. Overall, our results suggest that the use of antiparasitic compounds carries substantial costs, which could constrain host investment in medication behaviours.


Subject(s)
Apicomplexa/physiology , Asclepias/physiology , Biological Evolution , Butterflies/physiology , Genetic Fitness , Oviposition , Animals , Butterflies/growth & development , Butterflies/parasitology , Cardenolides/metabolism , Host-Parasite Interactions , Larva/growth & development , Larva/parasitology , Larva/physiology
20.
Sci Total Environ ; 566-567: 1277-1288, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27266523

ABSTRACT

Understanding the mechanisms by which abiotic drivers, such as climate and pollution, influence population dynamics of animals is important for our ability to predict the population trajectories of individual species under different global change scenarios. We monitored four leaf beetle species (Coleoptera: Chrysomelidae) feeding on willows (Salix spp.) in 13 sites along a pollution gradient in subarctic forests of north-western Russia from 1993 to 2014. During a subset of years, we also measured the impacts of natural enemies and host plant quality on the performance of one of these species, Chrysomela lapponica. Spring and fall temperatures increased by 2.5-3°C during the 21-year observation period, while emissions of sulfur dioxide and heavy metals from the nickel-copper smelter at Monchegorsk decreased fivefold. However, contrary to predictions of increasing herbivory with climate warming, and in spite of discovered increase in host plant quality with increase in temperatures, none of the beetle species became more abundant during the past 20years. No directional trends were observed in densities of either Phratora vitellinae or Plagiodera versicolora, whereas densities of both C. lapponica and Gonioctena pallida showed a simultaneous rapid 20-fold decline in the early 2000s, remaining at very low levels thereafter. Time series analysis and model selection indicated that these abrupt population declines were associated with decreases in aerial emissions from the smelter. Observed declines in the population densities of C. lapponica can be explained by increases in mortality from natural enemies due to the combined action of climate warming and declining pollution. This pattern suggests that at least in some tri-trophic systems, top-down factors override bottom-up effects and govern the impacts of environmental changes on insect herbivores.


Subject(s)
Coleoptera/physiology , Environmental Pollution/analysis , Global Warming , Animals , Population Dynamics , Seasons , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...