Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 35: 106856, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33665252

ABSTRACT

This dataset supports the research paper "Cover crop effects on maize drought stress and yield" by Hunter et al. [1]. Data is provided on ecophysiological and yield measurements of maize grown following five functionally diverse cover crop treatments. The experiment was conducted in Pennsylvania, USA from 2013-2015 with organic management. Cover crops were planted in August after winter wheat harvest. Cover crops were terminated in late May of the following year, manure was applied, and both were incorporated with full inversion tillage prior to planting maize. The five cover crop treatments included a tilled fallow control, medium red clover, cereal rye, forage radish, and a 3-species mixture of medium red clover, cereal rye, and Austrian winter pea. Drought was imposed with rain exclusion shelters starting in early July. Results are provided for two subplots per cover crop treatment representing ambient and drought conditions. The dataset includes: 1) soil moisture in spring and during the maize growing season; 2) maize height, leaf chlorophyll content, leaf area index, stomatal conductance, and pre-dawn leaf xylem water potential; 3) maize yield and yield components including kernel biomass, total biomass, harvest index, number of plants per subplot, ears per plant, kernel mass, and kernel number per ear, per plant, and per subplot; 4) modeled season-long radiation interception and radiation use efficiency of biomass production; and 5) maize rooting density by depth in one year only. Data was collected in the field and lab using ecophysiological instruments (e.g., SPAD meter, ceptometer, porometer, and pressure chamber). Biomass samples were taken to determine yield. Data presented have been averaged to the subplot level (ambient and drought). This dataset can inform future research focused on using cover crops and other cultural practices to improve climate adaptation in cropping systems and also may be useful for meta-analyses.

2.
Sci Rep ; 8(1): 8467, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855528

ABSTRACT

Climate models predict increasing weather variability, with negative consequences for crop production. Conservation agriculture (CA) may enhance climate resilience by generating certain soil improvements. However, the rate at which these improvements accrue is unclear, and some evidence suggests CA can lower yields relative to conventional systems unless all three CA elements are implemented: reduced tillage, sustained soil cover, and crop rotational diversity. These cost-benefit issues are important considerations for potential adopters of CA. Given that CA can be implemented across a wide variety of regions and cropping systems, more detailed and mechanistic understanding is required on whether and how regionally-adapted CA can improve soil properties while minimizing potential negative crop yield impacts. Across four US states, we assessed short-term impacts of regionally-adapted CA systems on soil properties and explored linkages with maize and soybean yield stability. Structural equation modeling revealed increases in soil organic matter generated by cover cropping increased soil cation exchange capacity, which improved soybean yield stability. Cover cropping also enhanced maize minimum yield potential. Our results demonstrate individual CA elements can deliver rapid improvements in soil properties associated with crop yield stability, suggesting that regionally-adapted CA may play an important role in developing high-yielding, climate-resilient agricultural systems.


Subject(s)
Crops, Agricultural , Soil/chemistry , Climate Change , Ecosystem , Glycine max/growth & development
3.
PLoS One ; 11(8): e0160974, 2016.
Article in English | MEDLINE | ID: mdl-27560666

ABSTRACT

Yield stability is fundamental to global food security in the face of climate change, and better strategies are needed for buffering crop yields against increased weather variability. Regional- scale analyses of yield stability can support robust inferences about buffering strategies for widely-grown staple crops, but have not been accomplished. We present a novel analytical approach, synthesizing 2000-2014 data on weather and soil factors to quantify their impact on county-level maize yield stability in four US states that vary widely in these factors (Illinois, Michigan, Minnesota and Pennsylvania). Yield stability is quantified as both 'downside risk' (minimum yield potential, MYP) and 'volatility' (temporal yield variability). We show that excessive heat and drought decreased mean yields and yield stability, while higher precipitation increased stability. Soil water holding capacity strongly affected yield volatility in all four states, either directly (Minnesota and Pennsylvania) or indirectly, via its effects on MYP (Illinois and Michigan). We infer that factors contributing to soil water holding capacity can help buffer maize yields against variable weather. Given that soil water holding capacity responds (within limits) to agronomic management, our analysis highlights broadly relevant management strategies for buffering crop yields against climate variability, and informs region-specific strategies.


Subject(s)
Crops, Agricultural/growth & development , Soil/chemistry , Zea mays/growth & development , Agriculture/methods , Climate , Climate Change , Droughts , Illinois , Linear Models , Michigan , Minnesota , Pennsylvania , Seasons , Temperature , Water , Weather
4.
Front Plant Sci ; 7: 65, 2016.
Article in English | MEDLINE | ID: mdl-26904043

ABSTRACT

There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in agricultural systems, allowing sustainable temporal intensification while protecting and enhancing soil functioning.

SELECTION OF CITATIONS
SEARCH DETAIL
...