Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37112042

ABSTRACT

In this study, we evaluated the use of bio-oil and biochar on epoxy resin. Bio-oil and biochar were obtained from the pyrolysis of wheat straw and hazelnut hull biomass. A range of bio-oil and biochar proportions on the epoxy resin properties and the effect of their substitution were investigated. TGA curves showed improved thermal stability for degradation temperature at the 5% (T5%), 10% (T10%), and 50% (T50%) weight losses on bioepoxy blends with the incorporation of bio-oil and biochar with respect to neat resin. However, decreases in the maximum mass loss rate temperature (Tmax) and the onset of thermal degradation (Tonset) were obtained. Raman characterization showed that the degree of reticulation with the addition of bio-oil and biochar does not significantly affect chemical curing. The mechanical properties were improved when bio-oil and biochar were incorporated into the epoxy resin. All bio-based epoxy blends showed a large increase in Young's modulus and tensile strength with respect to neat resin. Young's modulus was approximately 1955.90 to 3982.05 MPa, and the tensile strength was between 8.73 and 13.58 MPa for bio-based blends of wheat straw. Instead, in bio-based blends of hazelnut hulls, Young´s modulus was 3060.02 to 3957.84 MPa, and tensile strength was 4.11 to 18.11 Mpa.

2.
Materials (Basel) ; 15(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36556709

ABSTRACT

Titanium (Ti) alloys used for narrow dental implants usually contain aluminum (Al) and vanadium (V) for improved resistance. However, those elements are linked to possible cytotoxic effects. Thus, this study evaluated the biomechanical behavior of narrow dental implants made with Al- and V-free Ti alloys by the finite element method. A virtual model of a partially edentulous maxilla received single implants (diameter: 2.7 and 2.9 mm; length: 10 mm) at the upper lateral incisor area, with respective abutments and porcelain-fused-to-metal crowns. Simulations were performed for each implant diameter and the following eight alloys (and elastic moduli): (1) Ti-6Al-4V (control; 110 GPa), (2) Ti-35Nb-5Sn-6Mo-3Zr (85 GPa), (3) Ti-13Nb-13Zr (77 GPa), (4) Ti-15Zr (113 GPa), (5) Ti-8Fe-5Ta (120 GPa), (6) Ti-26.88Fe-4Ta (175 GPa), (7) TNTZ-2Fe-0.4O (107 GPa), and (8) TNTZ-2Fe-0.7O (109 GPa). The implants received a labially directed total static load of 100 N at a 45° angle relative to their long axis. Parameters for analysis included the maximum and minimum principal stresses for bone, and von Mises equivalent stress for implants and abutments. Ti-26.88Fe-4Ta reaches the lowest maximum (57 MPa) and minimum (125 MPa) principal stress values, whereas Ti-35Nb-5Sn-6Mo-3Zr (183 MPa) and Ti-13Nb-13Zr (191 MPa) models result in the highest principal stresses (the 2.7 mm model surpasses the threshold for bone overload). Implant diameters affect von Mises stresses more than the constituent alloys. It can be concluded that the narrow implants made of the Ti-26.88Fe-4Ta alloy have the most favorable biomechanical behavior, mostly by mitigating stress on peri-implant bone.

3.
Polymers (Basel) ; 12(10)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050366

ABSTRACT

The objective of this research was to investigate the development of epoxides from Chlorella vulgaris lipids to obtain a novel bio-based resin. The process involved the production of fatty acid methyl esters (FAMEs) by in situ transesterification of microalgal biomass, followed by epoxidation of the FAMEs to obtain bioresin. During the FAME production process, an assessment was made of the main factors affecting the production of unsaturated fatty acid methyl esters (UFAMEs), such as catalyst dosage and methanol:hexane volume ratio. For step epoxidation, an evaluation of the catalyst concentration, temperature and formic acid:hydrogen peroxide ratio was made. From the results obtained, UFAME production was maximized using 20 wt% of catalyst dosage and a volume ratio of 1:2 (v/v, methanol:hexane). Then, in the epoxidation stage, a higher yield was obtained using 1 wt% of catalyst with a volume ratio of 1:1 and maintaining a temperature of 70 °C. The bioresin was blended with neat epoxy resin (DGEBA) and cured with tetraethylenepentamine (TEPA). Bio-based resin was characterized via Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) to evaluate this material as an alternative source for oleochemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...