Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 32(9): 2360-72, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24805944

ABSTRACT

MicroRNAs (miRNAs) are noncoding, regulatory RNAs expressed dynamically during differentiation of human embryonic stem cells (hESCs) into defined lineages. Mapping developmental expression of miRNAs during transition from pluripotency to definitive endoderm (DE) should help to elucidate the mechanisms underlying lineage specification and ultimately enhance differentiation protocols. In this report, next generation sequencing was used to build upon our previous analysis of miRNA expression in human hESCs and DE. From millions of sequencing reads, 747 and 734 annotated miRNAs were identified in pluripotent and DE cells, respectively, including 77 differentially expressed miRNAs. Among these, four of the top five upregulated miRNAs were previously undetected in DE. Furthermore, the stem-loop for miR-302a, an important miRNA for both hESCs self-renewal and endoderm specification, produced several highly expressed miRNA species (isomiRs). Overall, isomiRs represented >10% of sequencing reads in >40% of all detected stem-loop arms, suggesting that the impact of these abundant miRNA species may have been overlooked in previous studies. Because of their relative abundance, the role of differential isomiR targeting was studied using the miR-302 cluster as a model system. A miRNA mimetic for miR-302a-5p, but not miR-302a-5p(+3), decreased expression of orthodenticle homeobox 2 (OTX2). Conversely, isomiR 302a-5p(+3) selectively decreased expression of tuberous sclerosis protein 1, but not OTX2, indicating nonoverlapping specificity of miRNA processing variants. Taken together, our characterization of miRNA expression, which includes novel miRNAs and isomiRs, helps establish a foundation for understanding the role of miRNAs in DE formation and selective targeting by isomiRs.


Subject(s)
Embryonic Stem Cells/physiology , Endoderm/physiology , MicroRNAs/chemistry , RNA, Small Interfering/genetics , Cell Culture Techniques , Cell Differentiation/genetics , Embryonic Stem Cells/chemistry , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Endoderm/chemistry , Endoderm/cytology , Endoderm/metabolism , Humans , MicroRNAs/biosynthesis , MicroRNAs/genetics , Pluripotent Stem Cells/chemistry , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/physiology , RNA, Small Interfering/metabolism , Sequence Analysis, RNA , Transfection
2.
PLoS Genet ; 9(3): e1003353, 2013.
Article in English | MEDLINE | ID: mdl-23516374

ABSTRACT

The let-7 microRNA (miRNA) regulates cellular differentiation across many animal species. Loss of let-7 activity causes abnormal development in Caenorhabditis elegans and unchecked cellular proliferation in human cells, which contributes to tumorigenesis. These defects are due to improper expression of protein-coding genes normally under let-7 regulation. While some direct targets of let-7 have been identified, the genome-wide effect of let-7 insufficiency in a developing animal has not been fully investigated. Here we report the results of molecular and genetic assays aimed at determining the global network of genes regulated by let-7 in C. elegans. By screening for mis-regulated genes that also contribute to let-7 mutant phenotypes, we derived a list of physiologically relevant potential targets of let-7 regulation. Twenty new suppressors of the rupturing vulva or extra seam cell division phenotypes characteristic of let-7 mutants emerged. Three of these genes, opt-2, prmt-1, and T27D12.1, were found to associate with Argonaute in a let-7-dependent manner and are likely novel direct targets of this miRNA. Overall, a complex network of genes with various activities is subject to let-7 regulation to coordinate developmental timing across tissues during worm development.


Subject(s)
Caenorhabditis elegans , Cell Differentiation , Gene Regulatory Networks , MicroRNAs , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Developmental , Genome , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...