Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Basic Microbiol ; 51(4): 442-6, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21298692

ABSTRACT

Metagenomic techniques are used to analyse bacterial communities allowing both culturable and unculturable species to be represented. However, the screening of oral metagenomic samples can be hindered by high animal host DNA content. This study evaluated methods for the reduction of human DNA concentrations within oral metagenomic samples. Plaque samples were collected from 27 patients presenting with periodontal disease and treated to remove human DNA using either selective lysis of eukaryotic cells at several buffer concentrations or differential centrifugation after treatment with trypsin and/or detergents. Human and bacterial DNA levels were determined by quantitative polymerase chain reaction (qPCR). The human DNA content of plaque extracts was significantly reduced by all treatments compared with an untreated control (P < 0.05). However, differential centrifugation simultaneously reduced the bacterial DNA content unless samples were pretreated with a detergent. Observations of Gram stained samples that were processed using differential centrifugation without detergent suggest that many bacteria remain adhered to human cells. An approach that uses differential centrifugation in parallel with selective lysis is recommended to fully represent the oral microbiota in metagenomic samples, including those tightly adhered to human cells and more delicate bacteria such as Mycoplasma.


Subject(s)
Bacteria/genetics , DNA/isolation & purification , Dental Plaque/microbiology , Metagenomics/methods , DNA/analysis , DNA/genetics , DNA, Mitochondrial/genetics , DNA, Ribosomal/genetics , Humans , Mouth/microbiology , Periodontal Diseases/microbiology , RNA, Ribosomal, 16S/genetics
2.
Astrobiology ; 10(7): 717-32, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20950171

ABSTRACT

The high flux of cosmic rays onto the unshielded surface of Mars poses a significant hazard to the survival of martian microbial life. Here, we determined the survival responses of several bacterial strains to ionizing radiation exposure while frozen at a low temperature characteristic of the martian near-subsurface. Novel psychrotolerant bacterial strains were isolated from the Antarctic Dry Valleys, an environmental analogue of the martian surface, and identified by 16S rRNA gene phylogeny as representatives of Brevundimonas, Rhodococcus, and Pseudomonas genera. These isolates, in addition to the known radioresistant extremophile Deinococcus radiodurans, were exposed to gamma rays while frozen on dry ice (-79°C). We found D. radiodurans to exhibit far greater radiation resistance when irradiated at -79°C than was observed in similar studies performed at higher temperatures. This greater radiation resistance has important implications for the estimation of potential survival times of microorganisms near the martian surface. Furthermore, the most radiation resistant of these Dry Valley isolates, Brevundimonas sp. MV.7, was found to show 99% 16S rRNA gene similarity to contaminant bacteria discovered in clean rooms at both Kennedy and Johnson Space Centers and so is of prime concern to efforts in the planetary protection of Mars from our lander probes. Results from this experimental irradiation, combined with previous radiation modeling, indicate that Brevundimonas sp. MV.7 emplaced only 30 cm deep in martian dust could survive the cosmic radiation for up to 100,000 years before suffering 106 population reduction.


Subject(s)
Deinococcus/radiation effects , Microbial Viability/radiation effects , Proteobacteria/radiation effects , Rhodococcus/radiation effects , Antarctic Regions , Cold Temperature , Desiccation , Environmental Exposure , Extraterrestrial Environment , Mars , Proteobacteria/isolation & purification , Radiation Tolerance , Radiation, Ionizing , Rhodococcus/isolation & purification
3.
Mol Ecol Resour ; 8(1): 56-61, 2008 Jan.
Article in English | MEDLINE | ID: mdl-21585718

ABSTRACT

A nondestructive, chemical-free method is presented for the extraction of DNA from small insects. Blackflies were submerged in sterile, distilled water and sonicated for varying lengths of time to provide DNA which was assessed in terms of quantity, purity and amplification efficiency. A verified DNA barcode was produced from DNA extracted from blackfly larvae, pupae and adult specimens. A 60-second sonication period was found to release the highest quality and quantity of DNA although the amplification efficiency was found to be similar regardless of sonication time. Overall, a 66% amplification efficiency was observed. Examination of post-sonicated material confirmed retention of morphological characters. Sonication was found to be a reliable DNA extraction approach for barcoding, providing sufficient quality template for polymerase chain reaction amplification as well as retaining the voucher specimen for post-barcoding morphological evaluation.

SELECTION OF CITATIONS
SEARCH DETAIL
...