Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 8174, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37210390

ABSTRACT

Terrestrial open water evaporation is difficult to measure both in situ and remotely yet is critical for understanding changes in reservoirs, lakes, and inland seas from human management and climatically altered hydrological cycling. Multiple satellite missions and data systems (e.g., ECOSTRESS, OpenET) now operationally produce evapotranspiration (ET), but the open water evaporation data produced over millions of water bodies are algorithmically produced differently than the main ET data and are often overlooked in evaluation. Here, we evaluated the open water evaporation algorithm, AquaSEBS, used by ECOSTRESS and OpenET against 19 in situ open water evaporation sites from around the world using MODIS and Landsat data, making this one of the largest open water evaporation validations to date. Overall, our remotely sensed open water evaporation retrieval captured some variability and magnitude in the in situ data when controlling for high wind events (instantaneous: r2 = 0.71; bias = 13% of mean; RMSE = 38% of mean). Much of the instantaneous uncertainty was due to high wind events (u > mean daily 7.5 m·s-1) when the open water evaporation process shifts from radiatively-controlled to atmospherically-controlled; not accounting for high wind events decreases instantaneous accuracy significantly (r2 = 0.47; bias = 36% of mean; RMSE = 62% of mean). However, this sensitivity minimizes with temporal integration (e.g., daily RMSE = 1.2-1.5 mm·day-1). To benchmark AquaSEBS, we ran a suite of 11 machine learning models, but found that they did not significantly improve on the process-based formulation of AquaSEBS suggesting that the remaining error is from a combination of the in situ evaporation measurements, forcing data, and/or scaling mismatch; the machine learning models were able to predict error well in and of itself (r2 = 0.74). Our results provide confidence in the remotely sensed open water evaporation data, though not without uncertainty, and a foundation by which current and future missions may build such operational data.

2.
Sensors (Basel) ; 19(5)2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30845746

ABSTRACT

Phenology of plants is important for ecological interactions. The timing and development of green leaves, plant maturity, and senescence affects biophysical interactions of plants with the environment. In this study we explored the agreement between land-based camera and satellite-based phenology metrics to quantify plant phenology and phenophases dates in five plant community types characteristic of the semi-arid cold desert region of the Great Basin. Three years of data were analyzed. We calculated the Normalized Difference Vegetation Index (NDVI) for both land-based cameras (i.e., phenocams) and Landsat imagery. NDVI from camera images was calculated by taking a standard RGB (red, green, and blue) image and then a near infrared (NIR) plus RGB image. Phenocam NDVI was calculated by extracting the red digital number (DN) and the NIR DN from images taken a few seconds apart. Landsat has a spatial resolution of 30 m², while phenocam spatial resolution can be analyzed at the single pixel level at the scale of cm² or area averaged regions can be analyzed with scales up to 1 km². For this study, phenocam regions of interest were used that approximated the scale of at least one Landsat pixel. In the tall-statured pinyon and juniper woodland sites, there was a lack of agreement in NDVI between phenocam and Landsat NDVI, even after using National Agricultural Imagery Program (NAIP) imagery to account for fractional coverage of pinyon and juniper versus interspace in the phenocam data. Landsat NDVI appeared to be dominated by the signal from the interspace and was insensitive to subtle changes in the pinyon and juniper tree canopy. However, for short-statured sagebrush shrub and meadow communities, there was good agreement between the phenocam and Landsat NDVI as reflected in high Pearson's correlation coefficients (r > 0.75). Due to greater temporal resolution of the phenocams with images taken daily, versus the 16-day return interval of Landsat, phenocam data provided more utility in determining important phenophase dates: start of season, peak of season, and end of season. More specific species-level information can be obtained with the high temporal resolution of phenocams, but only for a limited number of sites, while Landsat can provide the multi-decadal history and spatial coverage that is unmatched by other platforms. The agreement between Landsat and phenocam NDVI for short-statured plant communities of the Great Basin, shows promise for monitoring landscape and regional-level plant phenology across large areas and time periods, with phenocams providing a more comprehensive understanding of plant phenology at finer spatial scales, and Landsat extending the historical record of observations.

3.
Environ Manage ; 61(1): 58-68, 2018 01.
Article in English | MEDLINE | ID: mdl-29167949

ABSTRACT

Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.


Subject(s)
Conservation of Natural Resources , Rivers/chemistry , Rodentia/physiology , Animals , Ecosystem , Rodentia/growth & development , Surveys and Questionnaires , Water Supply
4.
Sensors (Basel) ; 16(11)2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27869752

ABSTRACT

Plant phenology is recognized as important for ecological dynamics. There has been a recent advent of phenology and camera networks worldwide. The established PhenoCam Network has sites in the United States, including the western states. However, there is a paucity of published research from semi-arid regions. In this study, we demonstrate the utility of camera-based repeat digital imagery and use of R statistical phenopix package to quantify plant phenology and phenophases in four plant communities in the semi-arid cold desert region of the Great Basin. We developed an automated variable snow/night filter for removing ephemeral snow events, which allowed fitting of phenophases with a double logistic algorithm. We were able to detect low amplitude seasonal variation in pinyon and juniper canopies and sagebrush steppe, and characterize wet and mesic meadows in area-averaged analyses. We used individual pixel-based spatial analyses to separate sagebrush shrub canopy pixels from interspace by determining differences in phenophases of sagebrush relative to interspace. The ability to monitor plant phenology with camera-based images fills spatial and temporal gaps in remotely sensed data and field based surveys, allowing species level relationships between environmental variables and phenology to be developed on a fine time scale thus providing powerful new tools for land management.


Subject(s)
Algorithms , Desert Climate , Photography/methods , Conservation of Natural Resources/methods , Ecosystem , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...