Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Trans Am Fish Soc ; 147(3): 480-496, 2018 May.
Article in English | MEDLINE | ID: mdl-30245522

ABSTRACT

Diversity in habitat and life-history strategies promote a species' long-term persistence. However, life-history strategies are most commonly studied at broad spatial and temporal scales. We applied longevity growth models and closed N-mixture models to examine within- versus between stream variability in life-history characteristics of Rio Grande Cutthroat Trout in northern New Mexico streams. We developed a von Bertalanffy growth model and a closed N-mixture model in a hierarchical Bayesian framework to examine the importance of fine-scale variability in temperature and density-dependence on growth and abundance. The model indicated that accumulation of degree days likely positively influenced instantaneous growth rates and, to a lesser extent, negatively affected asymptotic body length. A nonlinear response of abundance to temperature was also observed, suggesting that Cutthroat Trout productivity along the temperature continuum was affected by physiological limitations (e.g., optimal growth temperatures). Parameter variability was greatest at the segment level for asymptotic size and abundance, but greatest at the stream level for the rate at which asymptotic size is reached. In total, the results suggest that fine-scale habitat heterogeneity (i.e., temperature) may play important roles in the continued persistence of Rio Grande Cutthroat Trout. Management actions should, therefore, consider the role of fine-scale processes for improving the likelihood of future population persistence.

2.
PLoS One ; 12(5): e0177467, 2017.
Article in English | MEDLINE | ID: mdl-28531202

ABSTRACT

Density-dependent (DD) and density-independent (DI) habitat selection is strongly linked to a species' evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. We developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperature as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD) and DI variables. Additionally, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Furthermore, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. Our results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.


Subject(s)
Salmon/physiology , Alaska , Animals , Arctic Regions , Ecosystem , Models, Theoretical , Population Density , Population Dynamics
3.
Oecologia ; 182(2): 463-73, 2016 10.
Article in English | MEDLINE | ID: mdl-27334869

ABSTRACT

Coldwater fishes in streams, such as brook trout (Salvelinus fontinalis), typically are headwater specialists that occasionally expand distributions downstream to larger water bodies. It is unclear, however, whether larger streams function simply as dispersal corridors connecting headwater subpopulations, or as critical foraging habitat needed to sustain large mobile brook trout. Stable isotopes (δ(13)C and δ(15)N) and a hierarchical Bayesian mixing model analysis was used to identify brook trout that foraged in main stem versus headwater streams of the Shavers Fork watershed, West Virginia. Headwater subpopulations were composed of headwater and to a lesser extent main stem foraging individuals. However, there was a strong relationship between brook trout size and main stem prey contributions. The average brook trout foraging on headwater prey were limited to 126 mm standard length. This size was identified by mixing models as a point where productivity support switched from headwater to main stem dependency. These results, similar to other studies conducted in this watershed, support the hypothesis that productive main stem habitat maintain large brook trout and potentially facilitates dispersal among headwater subpopulations. Consequently, loss of supplementary main stem foraging habitats may explain loss of large, mobile fish and subsequent isolation of headwater subpopulations in other central Appalachian watersheds.


Subject(s)
Bayes Theorem , Trout , Animals , Appalachian Region , Ecosystem
4.
Oecologia ; 176(3): 859-69, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25218190

ABSTRACT

Energy limitation has long been the primary assumption underlying conceptual models of evolutionary and ecological processes in cave ecosystems. However, the prediction that cave communities are actually energy-limited in the sense that constituent populations are consuming all or most of their resource supply is untested. We assessed the energy-limitation hypothesis in three cave streams in northeastern Alabama (USA) by combining measurements of animal production, demand, and resource supplies (detritus, primarily decomposing wood particles). Comparisons of animal consumption and detritus supply rates in each cave showed that all, or nearly all, available detritus was required to support macroinvertebrate production. Furthermore, only a small amount of macroinvertebrate prey production remained to support other predatory taxa (i.e., cave fish and salamanders) after accounting for crayfish consumption. Placing the energy demands of a cave community within the context of resource supply rates provided quantitative support for the energy-limitation hypothesis, confirming the mechanism (limited energy surpluses) that likely influences the evolutionary processes and population dynamics that shape cave communities. Detritus-based surface ecosystems often have large detrital surpluses. Thus, cave ecosystems, which show minimal surpluses, occupy the extreme oligotrophic end of the spectrum of detritus-based food webs.


Subject(s)
Caves , Energy Intake , Food Chain , Invertebrates/physiology , Rivers , Vertebrates/physiology , Alabama , Animals , Astacoidea/physiology , Biomass
5.
PLoS One ; 9(3): e91673, 2014.
Article in English | MEDLINE | ID: mdl-24618602

ABSTRACT

Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3-60 km(2) and long-term average densities ranging from 0.335-0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for thermal refugia in larger main stems. It also is likely that source-sink dynamics and dispersal from small headwater habitats may partially influence brook trout population dynamics in the main stem.


Subject(s)
Ecosystem , Trout , Animals , Appalachian Region , Environment , Geography , Models, Theoretical , Population Density , Population Dynamics , Population Growth
SELECTION OF CITATIONS
SEARCH DETAIL
...