Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 7(3): e48, 2009 Mar 03.
Article in English | MEDLINE | ID: mdl-19260763

ABSTRACT

The nematode Caenorhabditis elegans is a popular model system in genetics, not least because a majority of human disease genes are conserved in C. elegans. To generate a comprehensive inventory of its expressed proteome, we performed extensive shotgun proteomics and identified more than half of all predicted C. elegans proteins. This allowed us to confirm and extend genome annotations, characterize the role of operons in C. elegans, and semiquantitatively infer abundance levels for thousands of proteins. Furthermore, for the first time to our knowledge, we were able to compare two animal proteomes (C. elegans and Drosophila melanogaster). We found that the abundances of orthologous proteins in metazoans correlate remarkably well, better than protein abundance versus transcript abundance within each organism or transcript abundances across organisms; this suggests that changes in transcript abundance may have been partially offset during evolution by opposing changes in protein abundance.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans/genetics , Drosophila Proteins , Drosophila melanogaster/genetics , Proteome , Animals , Caenorhabditis elegans Proteins/genetics , Drosophila Proteins/genetics , Gene Duplication , Genome , Operon , Proteomics/methods , Sequence Homology, Amino Acid
2.
J Am Soc Mass Spectrom ; 15(2): 142-9, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14766281

ABSTRACT

Protein methylation at arginine residues is a prevalent posttranslational modification in eukaryotic cells that has been implicated in processes from RNA-binding and transporting to protein sorting and transcription activation. Three main forms of methylarginine have been identified: N(G)-monomethylarginine (MMA), asymmetric N(G),N(G)-dimethylarginine (aDMA), and symmetric N(G),N'(G)-dimethylarginine (sDMA). To investigate gas-phase fragmentations and characteristic ions arising from methylated and unmodified arginine residues in detail, we subjected peptides containing these residues to electrospray triple-quadrupole tandem mass spectrometry. A variety of low mass ions including (methylated) ammonium, carbodiimidium, and guanidinium ions were observed. Fragment ions resulting from the loss of the corresponding neutral fragments (amines, carbodiimide, and guanidine) from intact molecular ions as well as from N- and C-terminal fragment ions were also identified. Furthermore, the peptides containing either methylated or unmodified arginines gave rise to abundant fragment ions at m/z 70, 112, and 115, for which cyclic ion structures are proposed. Electrospray ionization tandem mass spectra revealed that dimethylammonium (m/z 46) is a specific marker ion for aDMA. A precursor ion scanning method utilizing this fragment ion was developed, which allowed sensitive and specific detection of aDMA-containing peptides even in the presence of a five-fold excess of phosphorylase B digest. Interestingly, regular matrix-assisted laser desorption/ionization mass spectra recorded from aDMA- or sDMA-containing peptides showed metastable fragment ions resulting from cleavages of the arginine side chains. The neutral losses of mono- and dimethylamines permit the differentiation between aDMA and sDMA.


Subject(s)
Arginine/analysis , Arginine/chemistry , Peptides/chemistry , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Methylation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...