Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1235, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35264573

ABSTRACT

The growth of nanoparticles along one or two directions leads to anisotropic nanoparticles, but the nucleation (i.e., the formation of small seeds of specific shape) has long been elusive. Here, we show the total structure of a seed-sized Au56 nanoprism, in which the side Au{100} facets are surrounded by bridging thiolates, whereas the top/bottom {111} facets are capped by phosphine ligands at the corners and Br- at the center. The bromide has been proved to be the key to effectively stabilize the Au{111} to fulfill a complete face-centered-cubic core. In femtosecond electron dynamics analysis, the non-evolution of transient absorption spectra of Au56 is similar to that of larger-sized gold nanoclusters (n > 100), which is ascribed to the completeness of the prismatic Au56 core and an effective electron relaxation pathway created by the stronger Au-Au bonds inside. This work provides some insights for the understanding of plasmonic nanoprism formation.

2.
Nanoscale ; 13(46): 19438-19445, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34788780

ABSTRACT

The excited state dynamics of small-sized metal nanoclusters are dependent on their crystal structures, while the effect of the charge state remains largely unknown. Here, we report the influence of single electrons on the excited-state dynamics of non-superatom Au clusters by comparing the transient absorption isotropy and anisotropy dynamics of two rod-shaped Au25 nanoclusters protected by organic ligands. Two decay lifetimes (0.9 ps and 2.3 µs) can be identified in the excited state relaxation of Au252+ rods, which are assigned to the internal conversion from a higher to lower excited state and the relaxation to the ground state, respectively. With the addition of one electron, an additional 660 ps decay is observed in Au25+, which should originate from the presence of a single electron occupied molecular orbital. Transient anisotropy measurements reveal a 500 ps rotational diffusion process in both the nanoclusters, while the initial dipole moment orientation is found to be highly dependent on the charge state. These results are of importance to understanding the effect of the charge state on the optical properties of metal nanoclusters.

3.
J Phys Chem B ; 125(48): 13279-13290, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34814686

ABSTRACT

The photoinduced intramolecular charge separation (CS) and charge recombination (CR) phenomena in a series of donor-bridge-acceptor (D-B-A) molecules are intensively investigated as a means of understanding electron transport through the π-B. Pyrene (Pyr) and triarylamine (TAA) moieties connected via phenylene Bs of various lengths are studied because their CS and CR behaviors can be readily monitored in real time by femtosecond transient absorption (fs-TA) spectroscopy. By combining the steady-state and fs-TA spectroscopic measurements in a variety of solvents together with chemical calculations, the parameters that govern the CS behaviors of these dyads were obtained, such as the solvent effects on free energy and the B-length-dependent electronic coupling (VDA) between D and A. We observed the sharp switch of the CS behavior with the increase of the solvent polarity and B-linker lengths. Furthermore, in the case of the shortest distance between D and A when the electron coupling is sufficiently large, we observed that the CS phenomenon occurs even in low-polar solvents. Upon increasing the length of B, CS occurs only in strong polar solvents. The distance-dependent decay constant of the CS rate is determined as ∼0.53 Å-1, indicating that CS is governed by superexchange tunneling interactions. The CS rate constants are also approximately estimated using Marcus electron transfer theory, and the results imply that the VDA value is the key factor dominating the CS rate, while the facile rotation of the phenylene B is important for modulating the lifetime of the charge-separated state in these D-B-A dyads. These results shed light on the practical strategy for obtaining a high CS efficiency with a long-lived CS state in TAA-B-Pyr derivatives.

4.
J Phys Chem B ; 125(40): 11275-11284, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34587453

ABSTRACT

In the past decades, tremendous efforts have been invested into organic molecules involved in the excited-state intramolecular proton transfer (ESIPT) reaction due to their enormously Stokes-shifted fluorescence and distinctive photophysical properties. The alterations of the environmental medium can effectively adjust the luminous performance of ESIPT molecules, which inspires us to unravel the solvent effect on the ESIPT mechanism. Here, we report the solvent-dependent excited-state properties of two new seven-membered ring pyrrole-indole ESIPT molecules, g-PPDBI and e-PPDBI, by steady-state spectra, picosecond transient fluorescence spectra, femtosecond transient absorption spectra, and theoretical calculations. The bathochromic-shifted normal fluorescence and the negligibly shifted tautomer fluorescence suggest the occurrence of an excited-state intramolecular proton-coupled charge transfer reaction. Thus, the solvent effect plays a vital role in stabilizing the intramolecular charge transferred state, resulting in a higher ESIPT reaction barrier in more polar solvents. Additionally, the observation of the slight dynamic difference between PPDBIs with different π-conjugation positions provides a new strategy to adjust the performance of ESIPT molecules.


Subject(s)
Protons , Pyrroles , Hydrogen Bonding , Indoles , Solvents
5.
J Phys Chem Lett ; 12(32): 7717-7725, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34355904

ABSTRACT

Light-harvesting and then intramolecular energy transfer are the crucial steps in natural photosynthesis. Dendrimers are one of the most promising artificial light-harvesting antennas. Insight into the relationship between molecular structure and energy transfer (or delocalized excitation) in dendrimers would help in understanding and mimicking photosynthesis. Here, a series of dendrimers T1-T4 based on pyrene as a core and fluorene/carbazole as the dendrons have been studied with time-resolved fluorescence and femtosecond transient absorption spectroscopies, revealing that the large planar structure of T1 and T2 has led to strong coupling of pyrene and fluorene units, enabling delocalized excitation over the entire molecules. But for T3 and T4, the carbazole units linking the first- and second-generation branches have broken the planar structure and suppressed the π-electron delocalization, enabling the Förster resonance energy transfer. The efficient intramolecular energy transfer from peripheral branches to the core occurs within 2 ps.

6.
J Phys Chem Lett ; 12(29): 6907-6913, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34279956

ABSTRACT

Thermodynamically stable CsPbI3 inorganic perovskite has achieved high efficiency exceeding 20% with surface defect passivation, but a thorough understanding on the photophysics properties of surface passivated CsPbI3 inorganic perovskite is still lacking. Herein, we have used transient absorption spectroscopy to investigate the photophysical properties of ß-CsPbI3 perovskites with and without passivation. The results indicate that the carrier trapping process has become slower because of the reduced deep defects that were varied to shallow defects due to surface passivation. The bimolecular recombination of ß-CsPbI3 was also accelerated because of the improved carrier mobility after healing surface defects by passivation agents. Moreover, the efficient defect passivation can also elongate the hot carrier lifetime from 0.26 to 0.37 ps by impeding the charge trapping process. Our findings reveal that the defects passivation is beneficial to enhance defect tolerance, improve carrier transport, and slow down the hot carrier cooling for developing high-performance photovoltaics.

7.
J Phys Chem Lett ; 11(24): 10329-10339, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33232151

ABSTRACT

As one of the most promising nonfullerene acceptors for organic photovoltaics, perylene diimide (PDI)-based multibranched molecules with twisted or three-dimensional (3D) geometric structures have been developed, which effectively increase the power conversion efficiency (PCE) of organic solar cells. Understanding the structure-property relationships in multichromophoric molecular architectures at molecular and ultrafast time levels is a crucial step in establishing new design principles in organic electronic materials. For this, photodriven excited-state symmetry-breaking charge separation (SB-CS) of PDI-based multichromophoric acceptors has been proposed to improve the PCE by reducing the self-aggregation of the planar PDI monomer. Herein, we investigated the intramolecular excited-state SB-CS and charge recombination (CR) dynamics of two symmetric phenyl-methane-based PDI derivatives, a twist dimer PM-PDI2 (phenyl-methane-based PDI dimer) and a 3D configuration tetramer PM-PDI4 (phenyl-methane-based PDI tetramer), in different solvents using ultrafast femtosecond transient absorption (fs-TA) spectroscopy and quantum chemical calculations. The quantum chemical calculations and steady-state spectra show that the two PDI derivatives undergo conformational changes upon excitation, leading to their emission states that have the characteristics of partial charge-transfer (CT) exciton in all solvents. Based on the evolution of the fs-TA data, it is observed that the evolution from the CT state to SB-CS state is disfavored in a weak polar solvent, whereas clear SB-CS spectroscopic signatures of cationic and anionic PDI are observed in polar solvents. Faster CS and slower CR processes of PM-PDI4 are observed in comparison to those of PM-PDI2. The crowded space in the 3D structure shortens the distance between the branches, leading to a stronger electronic coupling at the lowest excited state and a larger negative Gibbs free energy change of PM-PDI4 relative to that of PM-PDI2, which benefits the charge separation among PDI units in PM-PDI4. Besides, the 3D structure of PM-PDI4 also restricts rotation to a surface crossing region between the excited state and ground state, thus inhibiting nonradiative CR process and increasing the CS state lifetime. Our results suggest that the kinetics of CS and CR processes are strongly related to the molecular geometric structure, and the excited-state symmetry breaking in the 3D structure acceptor has superior photogenerated charge and photovoltaic properties from the perspective of ultrafast dynamics.

8.
Phys Chem Chem Phys ; 21(35): 19359-19364, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31455949

ABSTRACT

A two-step photodissociation mechanism was proposed in the literature for dinitrites in the absence of direct evidence of the intermediate species. In this work, photodissociation dynamics of cis and trans 1,3-cyclohexane dinitrites are investigated by laser-induced fluorescence (LIF) spectroscopy and theoretical calculation methods. Observation of the fluorescence spectra of the 3-nitrosooxy cyclohexoxy radical provides direct experimental evidence that the intermediate species exists. The results indicate that photodissociation of dinitrites indeed follows a two-step mechanism, i.e. one of the O-NO bonds of the molecule breaks first upon 355 nm laser photolysis and generates an alkoxy radical (RO) plus NO; the alkoxy radical further dissociates in the secondary dissociation step and produces small fragments such as vinoxy etc.

9.
J Mass Spectrom ; 54(1): 55-65, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30426600

ABSTRACT

Suppression of the selective cleavage at N-terminal of proline is observed in the peptide cleavage by proteolytic enzyme trypsin and in the fragment ion mass spectra of peptides containing Arg-Pro sequence. An insight into the fragmentation mechanism of the influence of arginine residue on the proline effect can help in prediction of mass spectra and in protein structure analysis. In this work, collision-induced dissociation spectra of singly and doubly charged peptide AARPAA were studied by ESI MS/MS and theoretical calculation methods. The proline effect was evaluated by comparing the experimental ratio of fragments originated from cleavage of different amide bonds. The results revealed that the backbone amide bond cleavage was selected by the energy barrier height of the fragmentation pathway although the strong proton affinity of the Arg side chain affected the stereostructure of the peptide and the dissociation mechanism. The thermodynamic stability of the fragment ions played a secondary role in the abundance ratio of fragments generated via different pathways. Fragmentation studies of protonated peptide AACitPAA supported the energy-dependent hypothesis. The results provide an explanation to the long-term arguments between the steric conflict and the proton mobility mechanisms of proline effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...