Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(4): e2305877, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37718437

ABSTRACT

The precise design of low-cost, efficient, and definite electrocatalysts is the key to sustainable renewable energy. The urea oxidation reaction (UOR) offers a promising alternative to the oxygen evolution reaction for energy-saving hydrogen generation. In this study, by tuning the lattice expansion, a series of M-FeNi layered double hydroxides (M-FeNi LDHs, M: Mo, Mn, V) with excellent UOR performance are synthesized. The hydrolytic transformation of Fe-MIL-88A is assisted by urea, Ni2+ and high-valence metals, to form a hollow M-FeNi LDH. Owing to the large atomic radius of the high-valence metal, lattice expansion is induced, and the electronic structure of the FeNi-LDH is regulated. Doping with high-valence metal is more favorable for the formation of the high-valence active species, NiOOH, for the UOR. Moreover, the hollow spindle structure promoted mass transport. Thus, the optimal Mo-FeNi LDH showed outstanding UOR electrocatalytic activity, with 1.32 V at 10 mA cm-2 . Remarkably, the Pt/C||Mo-FeNi LDH catalyst required a cell voltage of 1.38 V at 10 mA·cm-2 in urea-assisted water electrolysis. This study suggests a new direction for constructing nanostructures and modulating electronic structures, which is expected to ultimately lead to the development of a class of auxiliary electrocatalysts.

2.
Small ; 19(11): e2207044, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642802

ABSTRACT

Precise design of low-cost, efficient and definite electrocatalysts is the key to sustainable renewable energy. Herein, this work develops a targeted-anchored and subsequent spontaneous-redox strategy to synthesize nickel-iron layered double hydroxide (LDH) nanosheets anchored with monodispersed platinum (Pt) sites (Pt@LDH). Intermediate metal-organic frameworks (MOF)/LDH heterostructure not only provides numerous confine points to guarantee the stability of Pt sites, but also excites the spontaneous reduction for PtII . Electronic structure, charge transfer ability and reaction kinetics of Pt@LDH can be effectively facilitated by the monodispersed Pt moieties. As a result, the optimized Pt@LDH that with the 5% ultra-low content Pt exhibits the significant increment in electrochemical water splitting performance in alkaline media, which only afford low overpotentials of 58 mV at 10 mA cm-2 for hydrogen evolution reaction (HER) and 239 mV at 10 mA cm-2 for oxygen evolution reaction (OER), respectively. In a real device, Pt@LDH can drive an overall water-splitting at low cell voltage of 1.49 V at 10 mA cm-2 , which can be superior to most reported similar LDH-based catalysts. Moreover, the versatility of the method is extended to other MOF precursors and noble metals for the design of ultrathin LDH supported monodispersed noble metal electrocatalysts promoting research interest in material design.

3.
Front Psychol ; 13: 806784, 2022.
Article in English | MEDLINE | ID: mdl-35783761

ABSTRACT

Core disgust is elicited by physical or chemical stimuli, while moral disgust is evoked by abstract violations of moral norms. Although previous studies have pointed out these two types of disgust can affect behavior and spatial dimensions of moral judgment, less is known about how moral and core disgust affect the temporal neural processing of moral judgment. In addition, whether moral and core disgust are only related to purity-based moral judgment or all kinds of moral judgment is still controversial. This study aimed to explore how core and moral disgust affect the neural processing of purity-based moral judgment by using affective priming and moral judgment tasks. The behavioral results showed that the severity of moral violation of non-purity ones is higher than purity ones. The event-related potentials (ERP) results mainly revealed that earlier P2 and N2 components, which represent the automatic moral processes, can differentiate neutral and two types of disgust rather than differentiating moral domain, while the later N450, frontal, and parietal LPP components, which represent the conflict detection and, later, cognitive processing can differentiate the purity and non-purity ones rather than differentiating priming type. Moreover, core and moral disgust priming mainly differed in the purity-based moral processing indexed by parietal LPP. Our findings confirmed that the disgusting effect on moral judgments can be explained within the framework of dual-process and social intuitionist models, suggesting that emotions, including core and moral disgust, played an essential role in the automatic intuition process. The later parietal LPP results strongly supported that core disgust only affected the purity-based moral judgment, fitting the primary purity hypothesis well. We show how these theories can provide novel insights into the temporal mechanisms of moral judgment.

5.
Adv Mater ; 34(12): e2107488, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35014086

ABSTRACT

Rational exploration of efficient, inexpensive, and robust electrocatalysts is critical for the efficient water splitting. Conjugated conductive metal-organic frameworks (cMOFs) with multicomponent layered double hydroxides (LDHs) to construct bifunctional heterostructure catalysts are considered as an efficient but complicated strategy. Here, the fabrication of a cMOF/LDH hetero-nanotree array catalyst (CoNiRu-NT) coupled with monodispersed ruthenium (Ru) sites via a controllable grafted-growth strategy is reported. Rich-amino hexaiminotriphenylene linkers coordinate with the LDH nanotrunk to form cMOF nanobranches, providing numerous anchoring sites to precisely confine and stabilize RuN4 sites. Moreover, monodispersed and reduced Ru moieties facilitate H2 O adsorption and dissociation, and the heterointerface between the cMOF and the LDH further modifies the chemical and electronic structures. Optimized CoNiRu-NT displays a significant increase in electrochemical water-splitting properties in alkaline media, affording low overpotentials of 22 mV at 10 mA cm-2 and 255 mV at 20 mA cm-2 for the hydrogen evolution reaction and oxygen evolution reaction, respectively. In an actual electrochemical system, CoNiRu-NT drives an overall water splitting at a low cell voltage of 1.47 V to reach 10 mA cm-2 . This performance is comparable to that of pure noble-metal-based materials and superior to most reported MOF-based catalysts.

6.
Adv Mater ; 33(8): e2006351, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33458883

ABSTRACT

The conjugation of metal-organic frameworks (MOFs) into different multicomponent materials to precisely construct aligned heterostructures is fascinating but elusive owing to the disparate interfacial energy and nucleation kinetics. Herein, a promising lattice-matching growth strategy is demonstrated for conductive MOF/layered double hydroxide (cMOF/LDH) heteronanotube arrays with highly ordered hierarchical porous structures enabling an ultraefficient oxygen evolution reaction (OER). CoNiFe-LDH nanowires are used as interior template to engineer an interface by inlaying cMOF and matching two crystal lattice systems, thus conducting a graft growth of cMOF/LDH heterostructures along the LDH nanowire. A class of hierarchical porous cMOF/LDH heteronanotube arrays is produced through continuously regulating the transformation degree. The synergistic effects of the cMOF and LDH components significantly promote the chemical and electronic structures of the heteronanotube arrays and their electroactive surface area. Optimized heteronanotube arrays exhibit extraordinary OER activity with ultralow overpotentials of 216 and 227 mV to deliver current densities of 50 and 100 mA cm-2 with a small Tafel slope of 34.1 mV dec-1 , ranking it among the best MOF and non-noble-metal-based catalysts for OER. The robust performance under high current density and vigorous gas bubble conditions enable such hierarchical MOF/LDH heteronanotube arrays as promising materials for practical water electrolysis.

7.
Nanoscale ; 12(27): 14514-14523, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32614012

ABSTRACT

Metal-organic frameworks (MOFs) with large surface area, abundant coordination metal centers and tunable structures are regarded as promising electrocatalysts for the water splitting reaction. However, the less accessible active sites and poor stability of MOFs hinder their potential practical applications. Hierarchical double-layer hydroxide (LDH)/MOF electrocatalysts that combine the advantages of two materials are expected to overcome these drawbacks. Herein, we develop a simple and universal strategy, in situ pseudomorphic transformation, to construct hierarchical LDH/MOF electrocatalysts. Accordingly, ultra-thin Fe-Ni LDH nanosheets are in situ produced in the heterometallic MOF during the transformation process. Profiting from the abundant metal sites and the extended electron transport channel from the inserted ultra-thin LDH arrays, the hierarchical Fe-Ni LDH/MOFs exhibit striking electrochemical activities for the oxygen evolution reaction (OER). In particular, the as-synthesized Fe-Ni LDH/MOF-b2 delivers the best OER performance, exhibiting an ultralow overpotential (255 mV at 10 mA cm-2), minimum Tafel slope (24 mV dec-1) and outstanding cycling durability. Meanwhile, the evolution process of the hierarchical Fe-Ni LDH/MOF has been monitored with the controllable in situ semi-transformation strategy. This also provides an opportunity to decipher the original active species for the OER process. Mechanism analysis indicates that the bimetallic MOF and bimetallic LDH are both active species, and the excellent OER performance of hierarchical Fe-Ni LDH/MOF could be attributed to the effect of "a whole greater than the sum of the parts".

SELECTION OF CITATIONS
SEARCH DETAIL
...