Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(14)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698442

ABSTRACT

Cement-based materials are non-uniform porous materials that are easily permeated by harmful substances, thereby deteriorating their structural durability. In this work, three ionic paraffin emulsions (IPEs) (i.e., anionic paraffin emulsion (APE), cationic paraffin emulsion (CPE), and non-ionic paraffin emulsion (NPE), respectively) were prepared. The effects of incorporation of IPEs into cement-based materials on hydrophobicity improvement were investigated by environmental scanning electron microscopy (ESEM), Fourier transform infrared (FTIR) spectroscopy, transmission and reflection polarizing microscope (TRPM) tests and correlation analyses, as well as by compressive strength, impermeability, and apparent contact angle tests. Finally, the optimal type and the recommended dose of IPEs were suggested. Results reveal that the impermeability pressure and apparent contact angle value of cement-based materials incorporated with IPEs are significantly higher than those of the control group. Thus, the hydrophobicity of cement-based materials is significantly improved. However, IPEs adversely affect the compressive strength of cement-based materials. The apparent contact angle mainly affects impermeability. These three IPEs impart hydrophobicity to cement-based materials. In addition, the optimal NPE dose can significantly improve the hydrophobicity of cement-based materials.

2.
Materials (Basel) ; 12(9)2019 Apr 28.
Article in English | MEDLINE | ID: mdl-31035426

ABSTRACT

Low atmospheric pressure (LAP) can enormously affect properties of cement concrete in plateau areas. There are fewer studies and attendances on this issue than those of cement concrete in normal atmospheric pressure (AP), because of the limitations of both environmental conditions and instruments. In order to improve properties of cement concrete under LAP, influences of LAP on properties of cement concrete were reviewed in this work. The influence rules and mechanism on properties of cement concrete were summarized. The corresponding mechanism and techniques were put forward for enhancing the properties of cement concrete. The results of researchers show that LAP can significantly reduce the air entraining ability of the air entraining agent (AEA). Air content in concrete linearly decreases with the decrease of AP when other conditions are constant. If the initial air content is high, the decrease rate of air content increases with the decrease of AP. When the initial air content in cement concretes is similar, the greater the slump of cement concrete, the stronger its resistance to the decrease of air content caused by the decrease of AP. In addition, the condition of the bubble characteristics of hardened cement concrete under LAP is worse than that under normal AP. Therefore, the change of concrete properties under LAP is mainly attributed to these bubble characteristics, such as air content, bubble spacing coefficient, bubble radius and bubble specific surface area. In this work, nano-silica (negative charges) with cationic oligomeric surfactants is recommended as a new type of AEA to optimize the bubble characteristics under LAP in plateau areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...