Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 34(45)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37541220

ABSTRACT

Copper azide (CA) has gradually become the chosen priming agent for microexplosive devices as a lead-free green priming agent. However, charge loading is challenging due to its high electrostatic sensitivity, severely limiting its practical application. In this study, copper hydroxide particles were evenly coated on the surface of carbon fiber using electrospinning and quick hot-pressing, and CA-based composites with uniform load were created using thein situazide technique while keeping good film characteristics. The produced CA-HP film has an electroostatic sensitivity of 3.8 mJ, which is much higher than the raw material of 0.05 mJ. The flame sensitivity has also been increased from 45 to 51 cm, and the use safety has been considerably enhanced. Furthermore, hot-pressed CA-HP films can improve the film's qualities, such as easy cutting and processing into the required shape, compatibility with MEMS processes, and the ability to successfully detonate secondary explosives with only 1 mg. This novel coupling technology expands the possibilities for developing high-safety primers for micro-initiator.

2.
ACS Appl Mater Interfaces ; 15(35): 41850-41860, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37611067

ABSTRACT

The characteristics of high burning rate, high energy output, and low pressure exponent have always been the focus of development in the field of composite solid rocket propellants. In this paper, a metal-organic framework (MOF-199) compound is introduced to prepare micro-nanospherical CL-20@MOF-199 composites via the spray-drying self-assembly technique to reach the above goals. MOF-199, which acts as an attractive combustion catalyst and a safety regulator, is uniformly coated on the surface of CL-20 with close interface contact between particles, effectively accelerating the thermal decomposition of CL-20 and ensuring safety performance. The average noncovalent interaction (aNCI) analysis illustrates that there are strong C-H···O hydrogen bonds and van der Waals interaction between CL-20 and MOF-199 molecules, greatly enhancing the effect of interparticle assembly. The effects of different contents of MOF-199 on the thermal, safety, and energy properties of CL-20 were discussed. The thermal analysis demonstrates that MOF-199 has a significant thermal catalytic effect on CL-20, with an advanced peak temperature of thermal decomposition of 14.2 °C and a reduced activation energy barrier of 34.2 kJ·mol-1, mainly benefitting from more exposed catalytic active sites and close interface contact. In addition, CL-20@MOF-199 composites exhibit decreased mechanical sensitivity (IS: 21-40 cm, FS: 80-240 N) and excellent energy performance. This work clearly demonstrates that MOF-199 is both a superior combustion catalyst and a good safety buffer for CL-20, and it opens new potential for further applications of CL-20 in composite solid propellants.

3.
Front Microbiol ; 12: 783195, 2021.
Article in English | MEDLINE | ID: mdl-34858382

ABSTRACT

Our previous study identified a new ß-galactosidase in Erwinia sp. E602. To further understand the lactose metabolism in this strain, de novo genome assembly was conducted by using a strategy combining Illumina and PacBio sequencing technology. The whole genome of Erwinia sp. E602 includes a 4.8 Mb chromosome and a 326 kb large plasmid. A total of 4,739 genes, including 4,543 protein-coding genes, 25 rRNAs, 82 tRNAs and 7 other ncRNAs genes were annotated. The plasmid was the largest one characterized in genus Erwinia by far, and it contained a number of genes and pathways responsible for lactose metabolism and regulation. Moreover, a new plasmid-borne lac operon that lacked a typical ß-galactoside transacetylase (lacA) gene was identified in the strain. Phylogenetic analysis showed that the genes lacY and lacZ in the operon were under positive selection, indicating the adaptation of lactose metabolism to the environment in Erwinia sp. E602. Our current study demonstrated that the hybrid de novo genome assembly using Illumina and PacBio sequencing technologies, as well as the metabolic pathway analysis, provided a useful strategy for better understanding of the evolution of undiscovered microbial species or strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...