Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(11): 116101, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38563927

ABSTRACT

Chemical short-range order is believed to be a key contributor to the exceptional properties of multicomponent alloys. However, its direct validation and confirmation has been highly elusive in most compounds. Recent studies for equiatomic NiCoCr alloys have shown that thermal treatments (i.e., annealing and aging) may facilitate and manipulate such ordering. In this work, by using molecular simulations, we show that nanomechanical probes, such as nanoindentation, may be utilized toward further manipulation of chemical short-range order, providing explicit validation pathways. By using well established interatomic potentials, we perform hybrid molecular-dynamics-Monte Carlo at room temperature to demonstrate that particular dwell nanoindentation protocols can lead, through thermal Monte Carlo equilibration, to local reorganization under the indenter tip, toward a density-wave stripe pattern. We characterize the novel density-wave structures, which are highly anisotropic and dependent on local, nanoindentation-induced stress concentrations, and we show how they deeply originate from intrinsic features of interelemental interactions. Furthermore, we show that these novel patterns consistently scale with the incipient plastic zone, under the indenter tip, justifying their observation at experimentally feasible nanoindentation depths.

2.
Nanoscale ; 15(10): 4870-4881, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36779233

ABSTRACT

Radiation-induced heterogeneous damage is the single largest source of failures seen in structural components in nuclear power reactors. Single crystal materials without grain boundaries, show considerable promise for overcoming this problem. In this work, such heterogeneous damage was further overcome in NixFe1-x single crystal alloys via a simple strategy of fine-tuning the composition. [001] NixFe1-x (x = 0, 0.38 and 0.62 at%) single crystals prepared using the Bridgman method were irradiated over a wide fluence range (4 × 1013 to 4 × 1015 ions per cm2). The irradiation-induced defect evolution was studied using Rutherford backscattering/channeling spectrometry, Monte Carlo simulations, transmission electron microscopy and nanoindentation. The results indicate an increased radiation tolerance of Ni0.38Fe0.62 compared to pure Ni and Ni0.62Fe0.38. The structural analysis performed by transmission electron microscopy revealed that defects tend to agglomerate at one place in Ni and Ni0.62Fe0.38, while in Ni0.38Fe0.62 no defect accumulation zone (characteristic damage peak) has been captured either at low or high fluence. Moreover, we found that the hardness change with the increase of Fe content is due to different arrangements of Fe atoms in the crystal structure, which influences the obtained mechanical properties of NixFe1-x in the pristine state and after ion implantation.

3.
Phys Rev Lett ; 118(16): 165001, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28474938

ABSTRACT

We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 10^{14}-10^{15} W/cm^{2} intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Y_{n} to be related to the laser energy E_{L}, the hohlraum radius R_{h}, and the pulse duration τ through a scaling law of Y_{n}∝(E_{L}/R_{h}^{1.2}τ^{0.2})^{2.5}. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

4.
Chin Med J (Engl) ; 102(1): 28-33, 1989 Jan.
Article in English | MEDLINE | ID: mdl-2504549

ABSTRACT

Local spinal cord ischemia model was established in 11 adult dogs. The anterior spinal artery, posterior spinal artery and radicular artery were cauterized with bipolar cautery. Ischemia of this segment of spinal cord was thus produced followed by paraplegia. The pathological findings of this spinal cord segment were softening and necrosis. The establishment of this animal model of segmental spinal cord ischemia is beneficial to scientific research in basic medicine and clinical practice.


Subject(s)
Disease Models, Animal , Ischemia/complications , Paraplegia/etiology , Spinal Cord/blood supply , Animals , Dogs , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...