Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
J Hazard Mater ; 446: 130661, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36587602

ABSTRACT

Pd-based catalytic hydrogenation for nitrate decontamination has been the subject of extensive research over the past 30 years. Advances in computational simulation, nanomaterial synthesis, and experimental characterization in the past decade have generated new understandings of the reaction mechanisms, guided the development of various catalysts with enhanced performance, and brought revolutionary upgrades to conventional nitrate treatment technologies. However, technical and economic challenges are still limiting its large-scale implementation. In this review, we provide a brief summary of the up-to-date reaction pathways. We then critically examine the methods for the synthesis of supported Pd-based catalysts and the supports that are used for the immobilization of Pd-based catalysts, identifying candidate catalysts with the most promising future. To facilitate practical deployment and niche applications of catalytic hydrogenation, we introduce alternative easy-to-handle hydrogen carriers and cost-effective metal catalysts that can potentially substitute precious Pd. Afterwards, we emphasize the significance of new development in hybrid catalytic systems that couple catalytic processes with other modules, enabling economically and sustainably treating nitrate-contaminated water. Future research needs are accordingly proposed. Through this review, we aim to provide guidance for standardized catalyst synthesis strategies and candidate catalyst evaluation and motivate future research that produces catalysts with industrially relevant performance.

2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33723013

ABSTRACT

With the increasing demand for net-zero sustainable aviation fuels (SAF), new conversion technologies are needed to process waste feedstocks and meet carbon reduction and cost targets. Wet waste is a low-cost, prevalent feedstock with the energy potential to displace over 20% of US jet fuel consumption; however, its complexity and high moisture typically relegates its use to methane production from anaerobic digestion. To overcome this, methanogenesis can be arrested during fermentation to instead produce C2 to C8 volatile fatty acids (VFA) for catalytic upgrading to SAF. Here, we evaluate the catalytic conversion of food waste-derived VFAs to produce n-paraffin SAF for near-term use as a 10 vol% blend for ASTM "Fast Track" qualification and produce a highly branched, isoparaffin VFA-SAF to increase the renewable blend limit. VFA ketonization models assessed the carbon chain length distributions suitable for each VFA-SAF conversion pathway, and food waste-derived VFA ketonization was demonstrated for >100 h of time on stream at approximately theoretical yield. Fuel property blending models and experimental testing determined normal paraffin VFA-SAF meets 10 vol% fuel specifications for "Fast Track." Synergistic blending with isoparaffin VFA-SAF increased the blend limit to 70 vol% by addressing flashpoint and viscosity constraints, with sooting 34% lower than fossil jet. Techno-economic analysis evaluated the major catalytic process cost-drivers, determining the minimum fuel selling price as a function of VFA production costs. Life cycle analysis determined that if food waste is diverted from landfills to avoid methane emissions, VFA-SAF could enable up to 165% reduction in greenhouse gas emissions relative to fossil jet.


Subject(s)
Biofuels , Fatty Acids, Volatile/metabolism , Food , Refuse Disposal , Aviation , Catalysis , Greenhouse Gases , Methane
3.
Water Res ; 175: 115688, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32171095

ABSTRACT

Ion exchange is widely used to treat nitrate-contaminated groundwater, but high salt usage for resin regeneration and management of waste brine residuals increase treatment costs and add environmental burdens. Development of palladium-based catalytic nitrate treatment systems for brine treatment and reuse has showed promising activity for nitrate reduction and selectivity towards the N2 over the alternative product ammonia, but this strategy overlooks the potential value of nitrogen resources. Here, we evaluated a hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery during treatment and reuse of nitrate-contaminated waste ion exchange brines. In the first step of the hybrid process, a Ru/C catalyst with high selectivity towards ammonia was found to be effective for nitrate hydrogenation under conditions representative of waste brines, including expected salt buildup that would occur with repeated brine reuse cycles. The apparent rate constants normalized to metal mass (0.30 ± 0.03 mM min-1 gRu-1 under baseline condition) were comparable to the state-of-the-art bimetallic Pd catalyst. In the second stage of the hybrid process, membrane distillation was applied to recover the ammonia product from the brine matrix, capturing nitrogen as ammonium sulfate, a commercial fertilizer product. Solution pH significantly influenced the rate of ammonia mass transfer through the gas-permeable membrane by controlling the fraction of free ammonia species (NH3) present in the solution. The rate of ammonia recovery was not affected by increasing salt levels in the brine, indicating the feasibility of membrane distillation for recovering ammonia over repeated reuse cycles. Finally, high rates of nitrate hydrogenation (apparent rate constant 1.80 ± 0.04 mM min-1 gRu-1) and ammonia recovery (overall mass transfer coefficient 0.20 m h-1) with the hybrid treatment process were demonstrated when treating a real waste ion exchange brine obtained from a drinking water utility. These findings introduce an innovative strategy for recycling waste ion exchange brine while simultaneously recovering potentially valuable nitrogen resources when treating contaminated groundwater.


Subject(s)
Distillation , Nitrogen , Hydrogenation , Ion Exchange , Nitrates , Salts
4.
Proc Natl Acad Sci U S A ; 116(52): 26421-26430, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31843899

ABSTRACT

Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ethers derived from C2 and C4 carboxylic acids are identified as advantaged fuel candidates with significantly improved ignition quality (>56% cetane number increase) and reduced sooting (>86% yield sooting index reduction) when compared to commercial petrodiesel. The prescreening process informed conversion pathway selection toward a C11 branched ether, 4-butoxyheptane, which showed promise for fuel performance and health- and safety-related attributes. A continuous, solvent-free production process was then developed using metal oxide acidic catalysts to provide improved thermal stability, water tolerance, and yields. Liter-scale production of 4-butoxyheptane enabled fuel property testing to confirm predicted fuel properties, while incorporation into petrodiesel at 20 vol % demonstrated 10% improvement in ignition quality and 20% reduction in intrinsic sooting tendency. Storage stability of the pure bioblendstock and 20 vol % blend was confirmed with a common fuel antioxidant, as was compatibility with elastomeric components within existing engine and fueling infrastructure. Technoeconomic analysis of the conversion process identified major cost drivers to guide further research and development. Life-cycle analysis determined the potential to reduce greenhouse gas emissions by 50 to 271% relative to petrodiesel, depending on treatment of coproducts.

5.
Water Res ; 141: 217-226, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29793161

ABSTRACT

The aims of this study are to evaluate, under visible light conditions, the ability of H2O2 and TiO2 to produce OH, their quantitative impacts on the cell integrity of Microcystis, and the subsequent release and degradation of microcystins (MCs). A sequential reaction model was developed, including one sub-model to simulate the rupture kinetics for cell integrity of Microcystis, and another to describe the release and degradation of MCs. For cell rupture, the dual-oxidant Delayed Chick-Watson model (DCWM) and dual-oxidant Hom model (HM) were first proposed and developed, giving excellent simulation results of cell rupture kinetics. Kinetic rate constants between Microcystis cells and H2O2 [Formula: see text] as well as OH (k•OH, Cell) under visible light successfully separated the individual effects of H2O2 and OH on Microcystis. The dual-oxidant models were further validated with additional experiments, making the models more convincing. Finally, the dual-oxidant cell rupture models were integrated with the MC degradation model and well predicted the observed MCs concentrations in the experimental systems. The results of this study not only demonstrate the potential application of H2O2 and TiO2 for the control of cyanobacteria and metabolites in natural water bodies, but also provide a new methodology to differentiate the individual contributions of the two oxidants, H2O2 and OH, on cell rupture, thus giving a novel way to more precisely determine the effective doses of applied oxidants for cyanobacteria control.


Subject(s)
Hydrogen Peroxide/toxicity , Hydroxyl Radical/toxicity , Light , Microcystis/drug effects , Models, Theoretical , Oxidants/toxicity , Titanium/toxicity , Kinetics , Microcystins/metabolism , Microcystis/metabolism , Water Pollutants/metabolism
6.
Environ Sci Technol ; 52(7): 4235-4243, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29493224

ABSTRACT

N-Nitrosamines have raised extensive concern due to their high toxicity and detection in treated wastewater and drinking water. Catalytic reduction is a promising alternative technology to treat N-nitrosamines, but to advance this technology pathway, there is a need to develop more-efficient and cost-effective catalysts. We have previously discovered that commercial catalysts containing ruthenium (Ru) are unexpectedly active in reducing nitrate. This study evaluated supported Ru activity for catalyzing reduction of N-nitrosamines. Experiments with N-nitrosodimethylamine (NDMA) show that contaminant is rapidly reduced on both commercial and in-house prepared Ru/Al2O3 catalysts, with the commercial material yielding an initial metal weight-normalized pseudo-first-order rate constant ( k0) of 1103 ± 133 L·gRu-1·h-1 and an initial turnover frequency (TOF0) of 58.0 ± 7.0 h-1. NDMA is reduced to dimethylamine (DMA) and ammonia end-products, and a small amount of 1,1-dimethylhydrazine (UDMH) was detected as a transient intermediate. Experiment with a mixture of five N-nitrosamines spiked into tap water (1 µg L-1 each) demonstrates that Ru catalysts are very effective in reducing a range of N-nitrosamine structures at environmentally relevant concentrations. Cost competitiveness and high catalytic activities with a range of contaminants provide a strong argument for developing Ru catalysts as part of the water purification and remediation toolbox.


Subject(s)
Drinking Water , Nitrosamines , Ruthenium , Water Pollutants, Chemical , Water Purification , Dimethylnitrosamine , Water
7.
Environ Sci Technol ; 49(9): 5502-10, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25821997

ABSTRACT

The effect of hydrogen peroxide on the cell integrity of a cyanobacterium, Microcystis aeruginosa, and on the release and degradation of microcystins (MCs) under simulated sunlight was investigated. The cyanobacterium was exposed to H2O2 in the range of 0-60 mg·L(-1) for 3.5 h. Production of OH radical in the solution was estimated by a chemical probe method. More than 99% (2 log) of the M. aeruginosa cells were ruptured or damaged by 3 h for all the treatments. Loss of cell integrity over time revealed two distinct phases. Cells retained their integrity during the initial lag phase and rapidly ruptured following first-order reaction afterward. A linear relationship was found between the duration of the lag phase and the steady-state concentration of OH radical. Release of MCs was closely correlated with the loss of cell integrity. Sequential reaction models were developed to simulate the release and degradation of MCs. These models were able to quantitatively describe the kinetics of all reactions under different H2O2 doses and extended exposure time. In particular, the models successfully predicted the concentration change of MCs using independently measured parameters. These models provide a simple and quantitative means to estimate the interaction of oxidants and cells and the consequent release of metabolites during oxidation treatment of cyanobacterium-laden waters.


Subject(s)
Hydrogen Peroxide/pharmacology , Light , Microcystins/metabolism , Microcystis/cytology , Microcystis/metabolism , Models, Theoretical , Extracellular Space/chemistry , Hydroxyl Radical/chemistry , Kinetics , Microcystis/drug effects , Microcystis/radiation effects , Oxidants/metabolism , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Water/metabolism
8.
Huan Jing Ke Xue ; 34(1): 257-62, 2013 Jan.
Article in Chinese | MEDLINE | ID: mdl-23487948

ABSTRACT

Three groups of binary mixtures between dimethylsulfoxide (DMSO) and three widely used pesticides, dimethoate (DIM), dichlorvos (DIC), and metalaxyl (MET), were respectively constructed by using the direct equipartition ray design (EquRay). The luminescent inhibition toxicities of single chemical and binary mixtures to Vibrio qinghaiensis sp. -Q67 were determined by the microplate toxicity analysis (MTA). Selecting the concentration addition (CA) model as an additive reference, we developed a new multi-effect residual analysis (MERA) to quantitatively characterize the deviation of the observed toxicity from that predicted by the CA model, i. e. the degree of toxicity interaction. It was shown that the toxicity interactions between DMSO and pesticide were dominated by antagonism, and the highest antagonism distributed between -23% and -15%. The concentration ranges where antagonism existed and the degree of antagonism were influenced by the components in the mixture, the concentration ratios of the components, and the effect level. A comparison of the MERA with the conventional isobologram and the extended toxic unit summation revealed that the MERA characterizes the degree of toxicity interaction in the view of effect, with less limitation by different concentration ratios or effect levels. Therefore, the MERA can be used to evaluate the complex toxicity interactions taking place in binary mixtures.


Subject(s)
Complex Mixtures/toxicity , Dimethyl Sulfoxide/toxicity , Environmental Pollutants/toxicity , Pesticides/toxicity , Vibrio/drug effects , Alanine/analogs & derivatives , Alanine/toxicity , Dichlorvos/toxicity , Dimethoate/toxicity , Drug Interactions , Environmental Pollutants/analysis , Environmental Pollutants/chemistry , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...