Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 135(10): 3571-3582, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36087141

ABSTRACT

KEY MESSAGE: Pleiotropic and epistatic quantitative disease resistance loci (QDRL) were identified for soybean partial resistance to different isolates of Pythium irregulare and Pythium sylvaticum. Pythium root rot is an important seedling disease of soybean [Glycine max (L.) Merr.], a crop grown worldwide for protein and oil content. Pythium irregulare and P. sylvaticum are two of the most prevalent and aggressive Pythium species in soybean producing regions in the North Central U.S. Few studies have been conducted to identify soybean resistance for management against these two pathogens. In this study, a mapping population (derived from E13390 x E13901) with 228 F4:5 recombinant inbred lines were screened against P. irregulare isolate MISO 11-6 and P. sylvaticum isolate C-MISO2-2-30 for QDRL mapping. Correlation analysis indicated significant positive correlations between soybean responses to the two pathogens, and a pleiotropic QDRL (qPirr16.1) was identified. Further investigation found that the qPirr16.1 imparts dominant resistance against P. irregulare, but recessive resistance against P. sylvaticum. In addition, two QDRL, qPsyl15.1, and qPsyl18.1 were identified for partial resistance to P. sylvaticum. Further analysis revealed epistatic interactions between qPirr16.1 and qPsyl15.1 for RRW and DRX, whereas qPsyl18.1 contributed resistance to RSE. Marker-assisted resistance spectrum analysis using F6:7 progeny lines verified the resistance of qPirr16.1 against four additional P. irregulare isolates. Intriguingly, although the epistatic interaction of qPirr16.1 and qPsyl15.1 can be confirmed using two additional isolates of P. sylvaticum, the interaction appears to be suppressed for the other two P. sylvaticum isolates. An 'epistatic gene-for-gene' model was proposed to explain the isolate-specific epistatic interactions. The integration of the QDRL into elite soybean lines containing all the desirable alleles has been initiated.


Subject(s)
Disease Resistance , Pythium , Disease Resistance/genetics , Plant Diseases/genetics , Seedlings , Glycine max/genetics
2.
Theor Appl Genet ; 135(7): 2341-2351, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35588015

ABSTRACT

KEY MESSAGE: A soybean natural population was genotyped by deep re-sequencing and phenotyped for six seed size- and shape-related traits under six environments to identify closely associated SNPs and candidate genes. Seed size and shape are important determining factors for soybean yield formation, while their genetic basis and molecular mechanism are still largely unknown, which seriously constrains the increasing of soybean yield at present. In view of this, a natural population was genotyped via the deep re-sequencing technique (~ 20 ×) and phenotyped for six related traits under six environments. In total, 154 SNPs were closely associated with seed length across diverse environments, and 323, 483, 565, 394 and 2038 SNPs were closely associated with seed width, seed diameter, seed circumference, seed area and ratio of length to width under multiple environments. Moreover, 98.70%, 96.28%, 48.24%, 85.13%, 97.21% and 98.58% of them were further demonstrated by the BLUP and mean values of the related traits. Furthermore, 218 genes flanking the associated SNPs on chromosomes 6 and 10 were analyzed for DNA mutations and RNA expressions through SNP alleles and transcriptome data, simultaneously. The candidate genes, Glyma.10G035200 (Sn1-specific diacylglycerol lipase), Glyma.10G035400 (transcription factor) and Glyma.10G058200 (phenylalanine ammonia-lyase), were discovered to relate with the seed size and shape for their different DNA sequences or differential RNA expressions among soybean varieties at five seed developmental stages. Thus, these closely associated SNPs and related genes provide novel insights and useful information for the seed size and shape genetic basis dissection and breeding improvement in soybean.


Subject(s)
Glycine max , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods , Plant Breeding , Quantitative Trait Loci , RNA , Seeds/genetics , Glycine max/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...