Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 137(2): 40, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296887

ABSTRACT

KEY MESSAGE: Analysis of fiber quality lncRNAs and their target genes from a pair of Gossypium mustelinum near-isogenic lines provide new prospects for improving the fiber quality of Upland cotton. Long noncoding RNAs (lncRNAs) are an important part of genome transcription and play roles in a wide range of biological processes in plants. In this research, a pair of near-isogenic cotton lines, namely, a Gossypium mustelinum introgression line (IL9) with outstanding fiber quality and its recurrent Upland cotton parent (PD94042), were used as the experimental materials. Cotton fibers were selected for lncRNA sequencing at 17 and 21 days post-anthesis. A total of 2693 differentially expressed genes were identified. In total, 5841 lncRNAs were ultimately screened, from which 163 differentially expressed lncRNAs were identified. Target genes of the lncRNAs were predicted by two different methods: cis and trans. Some of the target genes were related to cell components, membrane components, plant hormone signal transduction and catalytic metabolism, and the results indicated that there might also be important effects on the development of fiber. Four differentially expressed target genes related to fiber quality (Gomus.D05G015100, Gomus.A05G281300, Gomus.A12G023400 and Gomus.A10G226800) were screened through gene function annotation, and the functions of these four genes were verified through virus-induced gene silencing (VIGS). Compared to the negative controls, plants in which any of these four genes were silenced showed significant reductions in fiber strength. In addition, the plants in which the Gomus.A12G023400 gene was silenced showed a significant reduction in fiber uniformity, whereas the plants in which Gomus.A05G281300 was silenced showed a significant increase in fiber fineness as measured via micronaire. Our results showed that these genes play different roles during fiber development, impacting fiber quality.


Subject(s)
Gossypium , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Cotton Fiber , Phenotype , Plant Structures/metabolism , Gene Expression Regulation, Plant
2.
Front Plant Sci ; 14: 1092616, 2023.
Article in English | MEDLINE | ID: mdl-36875590

ABSTRACT

Uncovering the underlying mechanism of salt tolerance is important to breed cotton varieties with improved salt tolerance. In this study, transcriptome and proteome sequencing were performed on upland cotton (Gossypium hirsutum L.) variety under salt stress, and integrated analysis was carried out to exploit salt-tolerance genes in cotton. Enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed on differentially expressed genes (DEGs) obtained from transcriptome and proteome sequencing. GO enrichment was carried out mainly in the cell membrane, organelle, cellular process, metabolic process, and stress response. The expression of 23,981 genes was changed in physiological and biochemical processes such as cell metabolism. The metabolic pathways obtained by KEGG enrichment included glycerolipid metabolism, sesquiterpene and triterpenoid biosynthesis, flavonoid production, and plant hormone signal transduction. Combined transcriptome and proteome analysis to screen and annotate DEGs yielded 24 candidate genes with significant differential expression. The quantitative real-time polymerase chain reaction (qRT-PCR) validation of the candidate genes showed that two genes (Gh_D11G0978 and Gh_D10G0907) responded significantly to the induction of NaCl, and these two genes were further selected as target genes for gene cloning and functional validation through virus-induced gene silencing (VIGS). The silenced plants exhibited early wilting with a greater degree of salt damage under salt treatment. Moreover, they showed higher levels of reactive oxygen species (ROS) than the control. Therefore, we can infer that these two genes have a pivotal role in the response to salt stress in upland cotton. The findings in this research will facilitate the breeding of salt tolerance cotton varieties that can be grown on saline alkaline lands.

3.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768702

ABSTRACT

ATP-binding cassette transporter G (ABCG) has been shown to be engaged in export of broad-spectrum compounds with structural differences, but little is known concerning its role in cutin formation of cotton (Gossypium spp.). In this study, we conduct a genome-wide survey and detected 69, 71, 124 and 131 ABCG genes within G. arboretum, G. raimondii, G. hirsutum and G. barbadense, separately. The above ABCGs could be divided into four groups (Ia, Ib, Ic, II). Some ABCG genes such as GhABCG15, whose homologous gene transports cuticular lipid in Arabidopsis, was preferentially expressed in the development of fiber. A weighted gene co-expression network analysis (WGCNA) demonstrated that GhABCG expression was significantly associated with the amount of 16-Hydroxypalmitate (a main component of cutin precursor) in cotton fibers. Further, silencing of GhABCG15 by virus-induced gene silencing (VIGS) in cotton generated brightened and crinkled leaves as well as reduced thickness of cuticle and increased permeability. Chemical composition analysis showed the cutin content in GhABCG15-silenced leaves had decreased while the wax content had increased. Our results provide an insight for better understanding of the role of the Gossypium ABCG family and revealed the essential role of GhABCGs in cotton cutin formation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gossypium/metabolism , Membrane Lipids/metabolism , Arabidopsis Proteins/genetics , Cotton Fiber , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family
4.
Theor Appl Genet ; 135(7): 2279-2295, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35570221

ABSTRACT

KEY MESSAGE: Thirty-four SNPs corresponding with 22 QTLs for lint percentage, including 13 novel QTLs, was detected via GWAS. Two candidate genes underlying this trait were also identified. Cotton (Gossypium spp.) is an important natural textile fiber and oilseed crop cultivated worldwide. Lint percentage (LP, %) is one of the important yield components, and increasing LP is a core goal of cotton breeding improvement. However, the genetic and molecular mechanisms underlying LP in upland cotton remain unclear. Here, we performed a genome-wide association study (GWAS) for LP based on 254 upland cotton accessions in four environments as well as the best linear unbiased predictors using the high-density CottonSNP80K array. In total, 41,413 high-quality single-nucleotide polymorphisms (SNPs) were screened, and 34 SNPs within 22 quantitative trait loci (QTLs) were significantly associated with LP. In total, 175 candidate genes were identified from two major genomic loci (GR1 and GR2), and 50 hub genes were identified through GO enrichment and weighted gene co-expression network analysis. Two candidate genes (Gh_D01G0162 and Gh_D07G0463), which may participate in early fiber development to affect the number of fiber protrusions and LP, were also identified. Their genetic variation and expression were verified by linkage disequilibrium blocks, haplotypes, and quantitative real-time polymerase chain reaction, respectively. The weighted gene interaction network analysis showed that the expression of Gh_D07G0463 was significantly correlated with that of Gh_D01G0162. These identified SNPs, QTLs and candidate genes provide important insights into the genetic and molecular mechanisms underlying variations in LP and serve as a foundation for LP improvement via marker-assisted breeding.


Subject(s)
Gossypium , Quantitative Trait Loci , Cotton Fiber , Genome-Wide Association Study , Gossypium/genetics , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide
6.
Front Plant Sci ; 12: 756434, 2021.
Article in English | MEDLINE | ID: mdl-34759948

ABSTRACT

Lint percentage (LP) is an important yield component in cotton that is usually affected by initial fiber number and cell wall thickness. To explore how fiber cell wall development affects LP, phenotypic identification and dynamic transcriptome analysis were conducted using a single segment substitution line of chromosome 15 (SL15) that harbors a major quantitative trait locus (QTL) for LP. Compared to its recurrent parent LMY22, SL15 did not differ in initial fiber number, but the fiber cell wall thickness and single-fiber weight decreased significantly, altering LP. The comparative transcriptome profiles revealed that the secondary cell wall (SCW) development phase of SL15 was relatively delayed. Meanwhile, the expression of genes related to cell expansion decreased more slightly in SL15 with fiber development, resulting in relatively higher expression at SL15_25D than at LMY22_25D. SCW development-related genes, such as GhNACs and GhMYBs, in the putative NAC-MYB-CESA network differentially expressed at SL15_25D, along with the lower expression of CESA6, CSLC12, and CSLA2. The substituted chromosomal interval was further investigated, and found 6 of 146 candidate genes were differentially expressed in all four cell development periods including 10, 15, 20 and 25 DPA. Genetic variation and co-expression analysis showed that GH_D01G0052, GH_D01G0099, GH_D01G0100, and GH_D01G0140 may be important candidate genes associated with qLP-C15-1. Our results provide novel insights into cell wall development and its relationship with LP, which is beneficial for lint yield and fiber quality improvement.

7.
Front Plant Sci ; 12: 639104, 2021.
Article in English | MEDLINE | ID: mdl-33927736

ABSTRACT

To understand the molecular mechanisms of salinity tolerance during seed germination and post-germination stages, this study characterized phenotypic and transcriptome responses of two cotton cultivars during salinity stress. The two cultivars were salt-tolerant (ST) LMY37 and salt-sensitive (SS) ZM12, with the former exhibiting higher germination rate, growth, and primary-root fresh weight under salinity stress. Transcriptomic comparison revealed that up-regulation of differentially expressed genes (DEGs) was the main characteristic of transcriptional regulation in ST, while SS DEGs were mainly down-regulated. GO and KEGG analyses uncovered both common and specific responses in ST and SS. Common processes, such as reactive oxygen species (ROS) metabolism and cell wall biosynthesis, may be general responses to salinity in cotton. In contrast, DEGs involved in MAPK-signaling pathway activated by ROS, carotenoid biosynthesis pathway and cysteine and methionine metabolism pathway [producing the precursors of stress hormone abscisic acid (ABA) and ethylene (ET), respectively] as well as stress tolerance related transcription factor genes, showed significant expression differences between ST and SS. These differences might be the molecular basis leading to contrasting salinity tolerance. Silencing of GhERF12, an ethylene response factor gene, caused higher salinity sensitivity and increased ROS accumulation after salinity stress. In addition, peroxidase (POD) and superoxide dismutase (SOD) activity obviously declined after silencing GhERF12. These results suggest that GhERF12 is involved in salinity tolerance during early development. This study provides a novel and comprehensive perspective to understand key mechanisms of salinity tolerance and explores candidate genes that may be useful in developing stress-tolerant crops through biotechnology.

8.
PeerJ ; 8: e9936, 2020.
Article in English | MEDLINE | ID: mdl-33033660

ABSTRACT

BACKGROUND: The circadian clock not only participates in regulating various stages of plant growth, development and metabolism, but confers plant environmental adaptability to stress such as drought. Pseudo-Response Regulators (PRRs) are important component of the central oscillator (the core of circadian clock) and play a significant role in plant photoperiod pathway. However, no systematical study about this gene family has been performed in cotton. METHODS: PRR genes were identified in diploid and tetraploid cotton using bioinformatics methods to investigate their homology, duplication and evolution relationship. Differential gene expression, KEGG enrichment analysis and qRT-PCR were conducted to analyze PRR gene expression patterns under diurnal changes and their response to drought stress. RESULTS: A total of 44 PRR family members were identified in four Gossypium species, with 16 in G. hirsutum, 10 in G. raimondii, and nine in G. barbadense as well as in G. arboreum. Phylogenetic analysis indicated that PRR proteins were divided into five subfamilies and whole genome duplication or segmental duplication contributed to the expansion of Gossypium PRR gene family. Gene structure analysis revealed that members in the same clade are similar, and multiple cis-elements related to light and drought stress response were enriched in the promoters of GhPRR genes. qRT-PCR results showed that GhPRR genes transcripts presented four expression peaks (6 h, 9 h, 12 h, 15 h) during 24 h and form obvious rhythmic expression trend. Transcriptome data with PEG treatment, along with qRT-PCR verification suggested that members of clade III (GhPRR5a, b, d) and clade V (GhPRR3a and GhPRR3c) may be involved in drought response. This study provides an insight into understanding the function of PRR genes in circadian rhythm and in response to drought stress in cotton.

SELECTION OF CITATIONS
SEARCH DETAIL
...