Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Mol Nutr Food Res ; 68(9): e2300113, 2024 May.
Article in English | MEDLINE | ID: mdl-38644336

ABSTRACT

SCOPE: This study investigates the exosomal microRNA (miRNA) profiles of term and preterm breast milk, including the most abundant and differentially expressed (DE) miRNAs, and their impact on neurodevelopment in infants. METHODS AND RESULTS: Mature milk is collected from the mothers of term and preterm infants. Using high-throughput sequencing and subsequent data analysis, exosomal miRNA profiles of term and preterm human breast milk (HBM) are acquired and it is found that the let-7 and miR-148 families are the most abundant miRNAs. Additionally, 23 upregulated and 15 downregulated miRNAs are identified. MiR-3168 is the most upregulated miRNA in preterm HBM exosome, exhibiting targeting activity toward multiple genes involved in the SMAD and MAPK signaling pathways and playing a crucial role in early neurodevelopment. Additionally, the effects of miR-3168 on neurodevelopment is confirmed and it is determined that it is an essential factor in the differentiation of neural stem cells (NSCs). CONCLUSION: This study demonstrates that miRNA expression in breast milk exosomes can be influenced by preterm delivery, thereby potentially impacting neurodevelopment in preterm infants.


Subject(s)
Exosomes , MicroRNAs , Milk, Human , Milk, Human/chemistry , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/genetics , Exosomes/metabolism , Female , Infant, Newborn , Infant, Premature , Neural Stem Cells/metabolism , Premature Birth/genetics
2.
Clin Nutr ESPEN ; 59: 1-8, 2024 02.
Article in English | MEDLINE | ID: mdl-38220361

ABSTRACT

BACKGROUND & AIM: Sleep disorder is a growing concern, and calcium supplementation is often recommended as a potential intervention for sleep disorders. However, the causal relationship between calcium levels and the incidence of sleep disorders remains unclear. Mendelian randomization techniques utilizing genetic variants that affect calcium levels, can provide valuable insights into causality. This study aims to examine the association between calcium levels and sleep disorders in a diverse population that includes both adolescents and adults, and investigate the effects of calcium levels on sleep disorders. METHODS: Mendelian randomization analysis was conducted using data from UK Biobank and FinnGen datasets. The inverse-variance weighting (IVW) was selected as the primary method. In addition, traditional mediation analysis was performed on a subset of the NHANES data spanning from 2007 to 2018. RESULTS: Our findings provide evidence supporting a causal relationship between calcium intake and reduced risk of sleep disorders (beta = -0.079, SE = 0.0395, P = 0.0457). While not reaching statistical significance, other MR methods such as weighted median and Mr-Egger exhibited similar directional trends. Analysis of the NHANES cohort revealed a negative association between calcium levels and the prevalence of sleep disorders in male, black, and physically active populations. However, this association was not observed in other demographic groups. CONCLUSION: Our results suggested that there is no significant correlation between calcium levels and sleep disorder in non-exercise populations. This raises concerns about the long-term high-dose calcium supplementation in clinical practice, which requires further investigation.


Subject(s)
Calcium , Sleep Wake Disorders , Adolescent , Adult , Humans , Male , Dietary Supplements , Mendelian Randomization Analysis , Nutrition Surveys , Sleep Wake Disorders/genetics , Female
3.
Opt Express ; 31(14): 23127-23139, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475405

ABSTRACT

We numerically investigate linear and nonlinear optical responses in metasurfaces consisting of Au double-gap split ring resonators (DSRRs). Symmetry-protected dual bound states in the continuum (BICs) in such plasmonic metasurfaces are observed at the near-infrared optical regime. Efficient second harmonic generation (SHG) is obtained at the quasi-BIC models due to the symmetry broken. The optimized SHG responses are obtained at the critical couplings between radiation and nonradiation processes at the linearly x- and y-polarized light, respectively. High conversion efficiency of SHG of a value 10-6 is arrived at the fundamental intensity of 10 GW/cm2 at the quasi-BIC wavelength under the y-polarized illumination. Large extrinsic and tunable chirality of linear and nonlinear optical responses empowered by quasi-BICs is acquired in asymmetry metasurfaces at oblique circularly polarized incidence. The results indicate that the plasmonic metasurfaces of symmetry-protected BICs at the near-infrared optical regime have great potential applications in the on-chip efficient frequency conversion, and the linear and nonlinear chiral manipulation.

4.
Opt Express ; 30(15): 26455-26463, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236836

ABSTRACT

We investigate the nonlinear optical harmonic generation behaviors near the bound-states in the continuum (BICs) in hybrid plasmonic-photonic structures. The hybrid structures are designed to consist of a plasmonic grating covered with a nonlinear dielectric waveguide layer, which support two distinct groups of BICs, i.e. the symmetry-protected BICs and Friedrich-Wintgen BICs. The evolution of second- and third-harmonic generation (SHG and THG) near the two groups of BICs was studied. The high dependence of nonlinear response on the local field distribution and tensor components of susceptibility of nonlinear materials was determined. Especially, there exists optimized angles of incidence for efficient SHG and THG response due to the interaction of photonic and plasmonic modes. The results are important to understand the nonlinear response behaviors in hybrid plasmonic-photonic structures and to design the nonlinear photonic devices.

5.
Opt Express ; 30(11): 19030-19041, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221690

ABSTRACT

The electromagnetic fields distributed on the surface region of the nanostructure is very important to improve the performance of the sensor. Here, we proposed a highly sensitive sensor based on toroidal dipole (TD) governed by bound state in the continuum (BIC) in all-dielectric metasurface consisting of single non-coaxial core-shell cylinder nanostructure array. The excitation of TD resonance in a single nanostructure is still challenging. The designed nanostructure not only supports TD resonance in a single nanostructure but also has very high Q-factor. More importantly, its electric field distributes at the surface of outer cylinder-shell, which is very suitable for biosensing. To evaluate the sensing performance of our proposed structure, we investigated the sensitivity and the figure of merit (FOM) of nanostructure with different structural parameters. Maximum sensitivity and FOM can reach up to 342 nm/RIU and 1295 when the asymmetric parameter d =10 nm. These results are of great significance to the research of TD resonance and the development of ultrasensitive sensor.

6.
Opt Lett ; 47(20): 5260-5263, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36240337

ABSTRACT

We report an all-optical self-switching performed at an ultralow-level of intensity in a nanostructured moiré superlattice on a silicon platform. The moiré superlattice was formed by twisting two sets of triangular lattices in a silicon membrane in the same layer with a twist angle of 9.43°. The near flatband was formed, and the electric field was well confined in the center of the superlattice, which enabled all-optical switching under an ultralow intensity when the Kerr nonlinearity of silicon was considered. The intensity, which was reduced to 300 W/m2 and even 20 W/m2, can cause the transmittance of the nanostructure to change from 0 to 80% under x- and y-polarized pump light, respectively, and could be further decreased by optimizing the nanostructure or nonlinear materials. The results indicate that moiré superlattices fabricated from nonlinear materials are promising for integrated all-optical devices.

7.
Arch Virol ; 167(10): 2103-2107, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35834002

ABSTRACT

We report for the first time the complete genome sequence of a novel amalgavirus, tentatively designated as 'lily amalgavirus 1' (LAV-1), isolated from Lilium spp. in China. LAV-1 is a 3448-nt double-stranded RNA virus that encodes two putative proteins. Open reading frame 1 (ORF1) encodes a 394-aa protein with unknown function. ORF2 encodes a putative RNA-dependent RNA polymerase (RdRp) of 895 aa. The two ORFs putatively encode a '1 + 2' fusion protein generated by a '+1' programmed ribosomal frameshift (PRF). BLASTp analysis revealed that the complete genome sequence of LAV-1 shares 48.23-59.80% sequence identity (query sequence coverage > 77%) with those of members of the genus Amalgavirus, with the highest nucleotide sequence identity of 59.80% with that of Allium cepa amalgavirus 1 (query sequence coverage, 87%). The genome structure, phylogenetic relationships, and sequence similarities to other plant amalgaviruses suggest that LAV-1 is a new member of the genus Amalgavirus.


Subject(s)
Lilium , RNA Viruses , Genome, Viral , Open Reading Frames , Phylogeny , RNA, Viral/genetics
8.
Molecules ; 27(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35566045

ABSTRACT

A novel method for the determination of ultra-trace cobalt by dispersive liquid-liquid microextraction (DLLME) coupled with graphite furnace atomic absorption spectrometry has been developed. It is based on the color reaction of Co2+ with 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline (5-Br-PADMA) in a Britton-Robinson buffer solution at pH 6.0 to form stable hydrophobic chelates, which were separated and enriched by DLLME with 1,2-dichloroethane (CH2ClCH2Cl) as extraction and acetonitrile (CH3CN) as a dispersive solvent. The sedimented phase containing the chelates is then determined with GFAAS. Parameters that affect extraction efficiency, such as types and volumes of extraction and disperser solvents, pH of sample solution, extraction time, concentration of the chelating agent 5-Br-PADMA, and salt effect, were investigated. Under optimal conditions, the calibration graph was linear over the range 0.05-1.0 ng/mL, with a correlation coefficient of 0.9922 and a detection limit of 0.03 ng/mL. Preconcentration factor (PF) is calculated as the ratio of the aqueous solution volume (5 mL) to that of the organic phase volume (40 µL), and enrichment factor (EF) is calculated as the ratio of the slopes of the calibration graphs obtained with and without DLLME for 5.0 mL of sample solution, which were 120 and 112.5, respectively. The extraction efficiency, calculated by EF/PF·100, was 93.8%. The relative standard deviation (RSD) at the 0.5 ng/mL Co2+ level was 3.8% (n = 6). The method has been applied to the determination of trace cobalt in water samples with satisfactory results.


Subject(s)
Graphite , Liquid Phase Microextraction , Water Pollutants, Chemical , Chelating Agents/chemistry , Cobalt/analysis , Graphite/chemistry , Hydrogen-Ion Concentration , Limit of Detection , Liquid Phase Microextraction/methods , Solvents/chemistry , Spectrophotometry, Atomic/methods , Water/analysis , Water Pollutants, Chemical/analysis
9.
Materials (Basel) ; 15(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35454642

ABSTRACT

In-plane elastic and interlaminar properties of composite laminates are commonly obtained through separate experiments. In this paper, a simultaneous identification method for both properties using a single experiment is proposed. The mechanical properties of laminates were treated as uncertainties and Bayesian inference was employed with measured strain-load curves in compression tests of laminates with embedded delamination. The strain-load curves were separated into two stages: the pre-delamination stage and the post-delamination stage. Sensitivity analysis was carried out to determine the critical properties at different stages, in order to alleviate the ill-posed problem in inference. Results showed that the in-plane Young's modulus and shear modulus in elastic properties are dominant in the pre-delamination stage, and the interlaminar strength and type I fracture toughness in interlaminar properties are dominant in the post-delamination stage. Five times of property identification were carried out; the maximum coefficient of variation of identified properties was less than 1.11%, and the maximum error between the mean values of the identified properties and the ones from standard experiments was less than 5.44%. The proposed method can reduce time and cost in obtaining multiple mechanical properties of laminates.

10.
Opt Express ; 30(6): 10152-10167, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299425

ABSTRACT

The formations of different types of laser-induced periodic surface structures (LIPSS) on the surface of GaP crystals with different laser fluence are researched in experiments. The transition from the high spatial frequency LIPSS (HSFL) to the low spatial frequency LIPSS (LSFL) occurred as the number of the irradiated laser pulse increased. The finite difference time domain method combined with the holographic ablation model is used to simulate the LIPSS formation under the irradiation of multiple pulses. Different types of ripples are predicted by the electromagnetic approach. Results demonstrate that the electromagnetic origins of HSFL and LSFL are due to the interference of incident field and the scattering field under the multi-pulse irradiation.

11.
Nanomaterials (Basel) ; 11(11)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34835608

ABSTRACT

We model optical bistability in all-dielectric guide-mode resonance grating (GMR) nanostructures working at quasi-bound states in the continuum (BICs). The complementary metal-oxide-semiconductor (CMOS) compatible material silicon nitride (SiN) is used for the design of nanostructures and simulations. The ultra-low threshold of input intensity in the feasible nanostructure for nanofabrication is obtained at the level of ~100 W/cm2 driven by quasi-BICs. Additionally, the resonance wavelength in the GMR nanostructure can be widely tuned by incident angles with the slightly changed Q-factor that enables the optical bistable devices to work efficiently over a wide spectrum. The impact of the defects of grating that may be introduced in the fabrication process on the optical properties is discussed, and the tolerance of the defects to the optical performance of the device is confirmed. The results indicate that the GMR nanostructures of broadband and ultra-low threshold optical bistability driven by quasi-BICs are promising in the application of all-optical devices.

12.
Nanomaterials (Basel) ; 11(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34684995

ABSTRACT

A high Q-factor of the nanocavity can effectively reduce the threshold of nanolasers. In this paper, a modified nanostructure composed of a silver grating on a low-index dielectric layer (LID) and a high-index dielectric layer (HID) was proposed to realize a nanolaser with a lower lasing threshold. The nanostructure supports a hybrid plasmonic waveguide mode with a very-narrow line-width that can be reduced to about 1.79 nm by adjusting the thickness of the LID/HID layer or the duty ratio of grating, and the Q-factor can reach up to about 348. We theoretically demonstrated the lasing behavior of the modified nanostructures using the model of the combination of the classical electrodynamics and the four-level two-electron model of the gain material. The results demonstrated that the nanolaser based on the hybrid plasmonic waveguide mode can really reduce the lasing threshold to 0.042 mJ/cm2, which is about three times lower than the nanolaser based on the surface plasmon. The lasing action can be modulated by the thickness of the LID layer, the thickness of the HID layer and the duty cycle of grating. Our findings could provide a useful guideline to design low-threshold and highly-efficient miniaturized lasers.

13.
Pak J Med Sci ; 37(4): 993-1000, 2021.
Article in English | MEDLINE | ID: mdl-34290772

ABSTRACT

OBJECTIVES: We explored the utility of WeChat applet as part of the Outpatient Department (OPD) to provide patients with timely queuing information and compared it with the traditional calling system. METHODS: Data for the WeChat calling system was extracted for the period of May 2018 to September 2018. Data for the traditional system was extracted for the same period from the year 2017. We compared the effective patient waiting time and nurse idle time i.e. nonproductive time spent on factors outside of employees' control with the two systems. We also analyzed the relationship between the length of waiting time and conflicts between doctors and patients. RESULTS: The mean wait time for the traditional calling system was 126 minutes, while the average idle time for nurses was 96 minutes/day. On the other hand, the mean wait time for the WeChat calling system was 33 minutes, and the average idle time for nurses was 72 minutes/day. The incremental profit (cost of traditional calling system - cost of WeChat calling system) achieved from switching systems was 13,879 yuan/month. Behavioral observations showed that wait time (OR=2.745, 95%CI 1.936~3.892 P<0.0001) was a risk factor for staff-patient conflict. CONCLUSION: The cost of the WeChat calling system was significantly lower than the traditional system. Also, the traditional calling system was time-consuming. Longer waiting time was the main factor affecting OPD quality and caused conflicts between doctors and patients.

14.
Opt Express ; 29(11): 17286-17294, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154274

ABSTRACT

We investigate second harmonic generation (SHG) in all-dielectric resonance nanostructures of high-Q factors assisted by quasi-bound states in the continuum (quasi-BICs). The typical resonators, e.g., guided-mode resonance gratings and asymmetric metasurfaces, fabricated by AlGaAs were numerically studied with the consideration of nonlinear refraction of AlGaAs. The resonance peak and line-shape of linear transmission and SHG spectra in the resonators can be dramatically changed under intense pump intensities. The SHG conversion efficiency in the nanostructures working at quasi-BICs is much lower than the traditionally expected values without considering the nonlinear refraction of dielectrics. The ultimate SHG conversion efficiency is finally obtained. The investigation has the significance for the design and understanding of efficient nonlinear metasurfaces of high-Q factors.

15.
Opt Express ; 29(8): 12634-12643, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33985017

ABSTRACT

High-Q factor can enhance the interaction between light and matter, which is an important parameter to decrease the threshold of nanolasers. Here, we theoretically propose an eccentric nanoring structure with a high and controllable Q factor to realize a low-threshold and controllable nanolaser by amplifying the quasi-bound states in the continuum (quasi-BIC). The designed nanostructure supports a quasi-BIC because of the symmetry protection-breaking of the nanostructure. The quasi-BIC has a very high Q factor of about 9.6×104 and can also be adjusted by changing structural parameters. We use the energy level diagram of the four-level two-electron system to study the lasing action of the eccentric nanoring structure. The results show that the nanolaser has a relatively low threshold of about 6.46 µJ/cm2. Furthermore, the lasing behavior can be tuned by controlling the structural parameters of the eccentric circular ring structure.

16.
Front Pediatr ; 9: 625853, 2021.
Article in English | MEDLINE | ID: mdl-34017805

ABSTRACT

Purpose: In order to compensate for the early intrauterine growth restriction, small-for-gestational age (SGA) infants have "catch-up growth" after birth. Increased caloric intake has been suggested for SGA infants conventionally. It is important to determine if the early growth rate of body mass index (BMI) is associated with risk of persistent obesity later in life. In this longitudinal cohort study, we assessed the BMI of a large cohort of children who were SGA at birth to determine their risk of persistent obesity at school age (6-7 years) due to excessive weight gain in the first 3 years of life. Methods: We collected the height and weight data of 23,871 SGA babies. A polynomial function was used to fit the BMI-for-age z-score (BAZ) values of 0-6 years old SGA children and interpolate their growth trajectory. In addition, we screened out 6,959 children from 23,871 children to further evaluate the dynamic changes of early childhood BMI. We divided the school-age children into groups as non-obese (BAZ < 2) and obese (BAZ > 2), and determined the association between changes in BMI and school-age obesity. Results: From the perspective of BMI distribution, the interpolated growth trajectory indicated that SGA children reaching overweight status or developing obesity by 3 years of age, continued to have obesity until school age (R2, 0.65; R2, 0.21). The retrospective analysis showed that children who were overweight and had obesity during school age had a high BMI from early age. By analyzing the changes in early BMI, we found that the fastest growth of SGA children occurred in the early infancy before 6 months and they continued to grow rapidly for a period of time. Interestingly, former SGA children who maintained a near overweight (1 < BAZ < 2) status before the age of 2 maintained an appropriate growth rate and usually did not develop obesity. Conclusions: A rapid increase in BMI during early infancy in former SGA newborns leads to a persistent risk of obesity. The energy intake of SGA infants should appropriately meet the infants' growth needs and early BMI changes should be closely monitored for an optimal integrated management.

17.
Opt Lett ; 46(5): 1029-1032, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33649649

ABSTRACT

We report the bistability of second- and third-harmonic generation in monolayer graphene plasmonics supported by graphene nanoribbon arrays. The nonlinear optical bistability of harmonic generation at the ultra-low threshold intensity ∼100kW/cm2, along with the traditional linear optical bistability of transmittance, is observed due to the different local fundamental fields at the lower and higher state when the Kerr effect of graphene is considered. Importantly, the working fundamental wavelength can be tuned by the Fermi level of graphene and geometrical structure, which leads to the linear and nonlinear optical bistability available in a broadband for potential applications in advanced all-optical devices.

18.
Nanomaterials (Basel) ; 11(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652800

ABSTRACT

Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP. Additionally, a simulation of the composite structure was assessed using COMSOL; the results complied with those achieved through experiments: the SERS performance was enhanced, while the enhancing rate was downregulated, with the extension of the HMM periods. Furthermore, this structure exhibited high detection performance. During the experiments, rhodamine 6G (R6G) and malachite green (MG) acted as the probe molecules, and the limits of detection of the SERS substrate reached 10-10 and 10-8 M for R6G and MG, respectively. Moreover, the composite structure demonstrated prominent reproducibility and stability. The mentioned promising results reveal that the composite structure could have extensive applications, such as in biosensors and food safety inspection.

19.
Opt Express ; 28(23): 34024-34034, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182880

ABSTRACT

We report the giant enhanced optical harmonic generation in all-dielectric silicon nitride (SiN) based resonant waveguide gratings (RWGs) of quasi-bound states in the continuum (BICs) of ultra-high Q factor and localized field. The BICs are realized by tuning the excitation of the guided modes modulated by geometry parameters of four-part grating layer. At a feasible structure of quasi-BIC for nanofabrication, the SHG and THG are enhanced by 103 and 106, compared with those from the RWGs of traditional two-part grating layer, respectively, and even up to 108 and 1010 compared with those from the planar SiN film, respectively. The resonance wavelength of quasi-BICs can be effectively tuned by the angle of incidence, while almost not affect the enhancement of SHG and THG response. Our results show that the efficiency harmonic generation from all-nonlinear-dielectric RWGs of quasi-BICs has potential applications for the integrated nonlinear photonic devices.

20.
Opt Express ; 28(14): 20532-20542, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32680110

ABSTRACT

Optical bistability of linear reflectance and third-harmonic generation is investigated in a metasurface consisting of metallic grating coupled with metallic film spaced with nonlinear dielectric material. Linear optical reflectance and electric field enhancement are achieved for gaps <20 nm in the presence of classical nonlocality in metallic nanostructures. Enlarged thresholds from the higher to lower reflectance states are observed from 140 kW/cm2 for the local model to 300 kW/cm2 for the nonlocal model for 0.5-nm gaps. Though the linear reflectance almost overlaps for local and nonlocal models for 20-nm gaps, the optical bistability hysteresis loops retain large differences because local field differences are amplified owing to the relation of nonlinear refraction with square of local field and historical evolution of the optical bistability.

SELECTION OF CITATIONS
SEARCH DETAIL
...