Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pineal Res ; 73(3): e12819, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35906194

ABSTRACT

Sertoli cells (SCs) provide structural and nutritional support for developing germ cells. Normal glucose metabolism of SCs is necessary for spermatogenesis. Melatonin could alleviate the effects of heat stress on spermatogenesis. However, the influences of heat stress on glucose metabolism in SCs remain unclear, and the potential protective mechanisms of melatonin on SCs need more exploration. In this study, boar SCs were treated at 43°C for 30 min, and different concentrations of melatonin were added to protect SCs from heat stress-induced impairment. These results showed that heat stress-induced oxidative stress caused cell apoptosis, inhibited the pentose phosphate pathway, and decreased the ATP content. Furthermore, heat stress increased the expressions of glucose intake- and glycolytic-related enzymes, which enhanced the glycolysis activity to compensate for the energy deficit. Melatonin relieved heat stress-induced oxidative stress and apoptosis by activating the Kelch-like ECH-associated protein 1 (KEAP1)/NF-E2-related factor 2 signaling pathway to increase the capacity of antioxidants. In addition, melatonin enhanced heat-shock protein 90 (HSP90) expression through melatonin receptor 1B (MTNR1B), thereby stabilizing hypoxia-inducible factor-1α (HIF-1α). Activation of the HIF-1α signaling pathway enhanced glycolysis, promoted the pentose phosphate pathway, and increased cell viability. Our results suggest that melatonin reprograms glucose metabolism in SCs through the MTNR1B-HSP90-HIF-1α axis and provides a theoretical basis for preventing heat stress injury.


Subject(s)
Melatonin , Animals , Glucose/pharmacology , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Response , Kelch-Like ECH-Associated Protein 1/metabolism , Male , Melatonin/metabolism , Melatonin/pharmacology , NF-E2-Related Factor 2/metabolism , Sertoli Cells/metabolism , Swine
2.
Theriogenology ; 185: 6-15, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35344833

ABSTRACT

Heat stress reduces the number of Sertoli cells and impairs spermatogenesis. Mounting evidence indicates that lipid homeostasis is fundamental to cell survival. However, little is known about the role of lipid peroxides in the heat stress-induced apoptosis of Sertoli cells. In the present study, we used metabolomics to explore the changes of lipid peroxides in porcine Sertoli cells under heat stress using liquid chromatograph-mass spectrometry. These results showed a notable increase in the content of 8-hydroxyeicosatetraenoic acid (8-HETE), and 15-hydroxyeicosatetraenoic acid (15-HETE). Furthermore, we found that among arachidonate lipoxygenases, heat stress significantly increased the expression of arachidonate 15-lipoxygenase type B (ALOX15B). Moreover, baicalein, a specific inhibitor of ALOX15B, reduced the content of 8-HETE and 15-HETE, and decreased the apoptosis rate in heat stress-treated porcine Sertoli cells. In addition, baicalein and small interfering RNAs targeting ALOX15B increased the content of 8-HETE and 15-HETE, and activated the p38-p53 pathway, causing apoptosis in heat stress treated porcine Sertoli cells. Interestingly, a p38 inhibitor decreased the expression of ALOX15B, reduced the content of 8-HETE and 15-HETE, and decreased the expression of p53 and the apoptosis rate in heat stress treated porcine Sertoli cells. A p53 inhibitor had similar effect on Sertoli cells. These results indicated that heat stress enhanced the expression of ALOX15B, increased the content of 8-HETE and 15-HETE, and activated the p38-p53 pathway to cause apoptosis. ALOX15B and lipid peroxides obtained feedback from the p38-p53 pathway. Our findings will help to reveal the mechanism of lipid metabolism in Sertoli cells, and could provide a new targeted substrate for anti-heat stress strategies.


Subject(s)
Lipid Peroxides , Sertoli Cells , Animals , Apoptosis , Heat-Shock Response , Lipid Peroxides/pharmacology , Male , Swine , Tumor Suppressor Protein p53
3.
Reprod Fertil Dev ; 31(10): 1616-1627, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31242957

ABSTRACT

As an important gram-negative bacterial outer membrane component, lipopolysaccharide (LPS) plays an important role in bacterial-induced endometritis in sows. However, how LPS induces endometritis is unclear. We stimulated sow endometrial epithelial cells (EECs) with LPS and detected cell viability and tumour necrosis factor-α (TNF-α) and interleukin-1 (IL-1) secretion. LPS affected EEC viability and TNF-α and IL-1 secretion in a dose-dependent manner. LPS induced differential expression in 10 of 393 miRNAs in the EECs (downregulated, nine; upregulated, one). MicroRNA (miRNA) high-throughput sequencing of the LPS-induced EECs plus bioinformatics analysis and the dual-luciferase reporter system revealed a novel miRNA target gene: mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Ssc-novel-miR-106-5p mimic, inhibitor and the nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation inhibitor Bay11-7085 were used to detect EEC nuclear factor-κB phosphorylation levels (p-NF-κB) and TNF-α and IL-1 secretion. MiR-106-5p mimic downregulated MAP3K14 mRNA and protein expression levels, inhibited p-NF-κB levels and decreased IL-1 and TNF-α secretion, whereas miR-106-5p inhibitor had the opposite effect. Bay11-7085 inhibited p-NF-κB expression and TNF-α and IL-1 secretion. These results suggest that LPS downregulates ssc-novel-miR-106-5p expression in sow EECs to increase MAP3K14 expression, which increases p-NF-κB to promote IL-1 and TNF-α secretion.


Subject(s)
Endometrium/drug effects , Epithelial Cells/drug effects , Inflammation/chemically induced , Lipopolysaccharides/pharmacology , MicroRNAs/physiology , Protein Serine-Threonine Kinases/genetics , Animals , Cells, Cultured , Down-Regulation/drug effects , Down-Regulation/genetics , Endometritis/chemically induced , Endometritis/genetics , Endometritis/metabolism , Endometritis/veterinary , Endometrium/immunology , Endometrium/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Female , Gene Expression Regulation, Enzymologic/drug effects , Inflammation/genetics , Inflammation/metabolism , MAP Kinase Signaling System/drug effects , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Swine , NF-kappaB-Inducing Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...