Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Plant ; 175(1): e13842, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36543752

ABSTRACT

Potassium (K) application can alleviate cotton salt stress, but the regulatory mechanisms affecting cotton fiber elongation and ion homeostasis are still unclear. A two-year field experiment was conducted to explore the effects of K on the osmolyte contents (soluble sugar, K+ content, and malate) and related enzyme activities during the fiber elongation of two cotton cultivars with contrasting salt sensitivity (CCRI-79; salt tolerant cultivar, and Simian 3; salt-sensitive cultivar). Three K application treatments (0, 150, and 300 kg K2 O ha-1 ) were applied at three soil salinity levels (low salinity, EC = 1.73 ± 0.05 dS m-1 ; medium salinity, EC = 6.32 ± 0.10 dS m-1 ; high salinity, EC = 10.84 ± 0.24 dS m-1 ). K application improved fiber length and alleviated salt stress by increasing the maximum velocity of fiber elongation (Vmax ). The increase rate of K on fiber length decreased with elevating salt stress, and the increase rate of K on Vmax of CCRI-79 was greater than that of Simian3. K application can increase the enzyme activities (phosphoenolpyruvate carboxylase, PEPC, E.C. 4.1.1.31; pyrophosphatase, PPase, E.C. 3.6.1.1; and plasma membrane H+ -ATPase, PM H+ -ATPase, E.C. 3.6.3.14) as well as the content of osmolytes associated with the enzymes mentioned above. K increased the osmolyte contents under salt stress, and the increase in the K+ content of the fibers was much higher than that of soluble sugar and malate. The results of this study indicated K fertilizer application rates regulate the metabolism of osmolytes in cotton fiber development under salt stress, K+ is more critical to fiber elongation.


Subject(s)
Gossypium , Malates , Gossypium/physiology , Malates/metabolism , Potassium/metabolism , Salt Stress , Cotton Fiber , Homeostasis , Sugars/metabolism , Adenosine Triphosphatases/metabolism
2.
ACS Appl Bio Mater ; 5(11): 5113-5125, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36270019

ABSTRACT

As an appealing biomimetic strategy for various medical applications, cell membrane coating lacks sensitive on-demand breaking capability. Herein, we incorporated thermosensitive lipid (TSL) membrane into red blood cell (RBC) and MCF-7 cancer cell (MC) hybrid membrane ([RBC-MC]M) vesicles. The [RBC-MC-TSL]M was coated onto doxorubicin (Dox)-loaded hollow gold nanoparticles to enhance chemo-/photothermal combined tumor therapy at a mild hyperthermia temperature (≤49 °C). Double-layer coating with TSL and [RBC-MC-TSL]M as the inner and outer layer, respectively, presented better antileakage and higher NIR-responsivity than single-layer coating. The Dox release ratio upon NIR laser irradiation (≤49 °C) was 74.6%, much higher than that (33.5%) without NIR laser. The nanodrug can be efficiently and specifically taken up by MCF-7 cells. In addition, the nanodrug exhibited excellent tumor-targeting property, with 4.08- and 1.12-times Dox accumulation in MCF-7 tumors compared to free Dox and [RBC-MC]M-coated counterpart, respectively. Most importantly, TSL incorporation significantly enhanced NIR-responsive antitumor efficiency, with tumor growth inhibition ratio increased from 35.1% to 48.6% after a single dose administration. Besides, the nanodrug exhibited very good biocompatibility. Camouflaging nanoparticles with the thermosensitive biomimetic hybrid membrane provides a painless and promisingly clinical-applicable approach for effective chemo-/photothermal combined mild-hyperthermia tumor therapy.


Subject(s)
Hyperthermia, Induced , Metal Nanoparticles , Gold/pharmacology , Biomimetics , Metal Nanoparticles/therapeutic use , Doxorubicin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...