Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(20): 12416-12426, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35480374

ABSTRACT

Reprocessing of spent nuclear fuel aims at improving resource efficiency and reducing its radiotoxicity and heat production in the long term. The necessary separation of certain metal ions from the spent fuel solutions can be achieved using different solvent extraction processes. For the scenario of the EURO-GANEX process, the use of the new, modified diglycolamide 2,2'-oxybis(N,N-didecylpropanamide) (mTDDGA) was recently proposed to simplify the current solvent composition and reduce extraction of fission products. Before further developing the process based on this new ligand, its stability under ionizing radiation conditions needs to be studied. For this reason, gamma irradiation experiments were conducted followed by analyses with high performance liquid chromatography coupled to a mass spectrometer (HPLC-MS). The determined degradation rate of mTDDGA was found to be lower than that of the reference molecule N,N,N',N'-tetra-n-octyl-diglycolamide (TODGA). Many identified degradation compounds of both molecules are analogues showing the same bond breaking, although also unreported de-methylation, double/triple de-alkylation and n-dodecane addition products were observed.

2.
Eur J Pharm Sci ; 156: 105581, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33035662

ABSTRACT

Amyloid-ß (Aß) plays a central role in the development and progression of Alzheimer's disease (AD) with Aß oligomers representing the most toxic species. The all-d-enantiomeric peptide RD2, which recently successfully completed clinical phase I, specifically eliminates Aß oligomers in vitro as well as in vivo and improves cognitive deficits in various transgenic AD mouse models even after oral administration. To further enhance the oral absorption of RD2, folic acid has been conjugated to the d-peptide promoting an endocytosis-mediated uptake via a folate receptor located in the intestine. Two different conjugation strategies were selected to obtain prodrugs with folic acid being cleaved after intestinal absorption releasing unmodified RD2 in order to enable RD2's unaltered systemic efficacy. Both conjugates remained stable in simulated gastrointestinal fluids. But only one of them was suitable as prodrug as it was cleaved to RD2 in vitro in human blood plasma and liver microsomes and in vivo in mice after intravenous injection leading to a systemic release of RD2. Furthermore, the conjugate's permeability in vitro and after oral administration in mice was strongly enhanced compared to unconjugated RD2 demonstrating the prodrug's functionality. However, the conjugate seemed to have impaired the mice's wellbeing shortly after oral administration possibly resulting from strain-specific hypersensitivity to folic acid. Nevertheless, we assume that the prodrug is actually non-toxic, especially in lower concentrations as verified by a cell viability test. Furthermore, lower dosages can be applied with unaltered efficacy due to its enhanced oral absorption.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/drug therapy , Animals , Folic Acid , Mice , Mice, Transgenic , Stereoisomerism
3.
Dalton Trans ; 48(45): 17005-17013, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31691689

ABSTRACT

The radiation chemistry of a series of hydrophilic diglycolamides (DGAs: TEDGA, Me-TEDGA, Me2-TEDGA, and TPDGA) has been investigated under neutral pH, concentrated aqueous nitrate solution conditions. A combination of steady-state gamma and time-resolved pulsed electron irradiation experiments, supported by advanced analytical techniques and multi-scale modeling calculations, have demonstrated that: (i) the investigated hydrophilic DGAs undergo first-order decay with an average dose constant of (-3.18 ± 0.23) × 10-6 Gy-1; (ii) their degradation product distributions are similar to those under pure water conditions, except for the appearance of NOx adducts; and (iii) radiolysis is driven by hydroxyl and nitrate radical oxidation chemistry moderated by secondary degradation product scavenging reactions. Overall, the radiolysis of hydrophilic DGAs in concentrated, aqueous nitrate solutions is significantly slower and less structurally sensitive than under pure water conditions, similar to their lipophilic analogs. Acid hydrolysis, not radiolysis, is expected to limit their useful lifetime. These findings are promising for the deployment of hydrophilic DGAs as actinide aqueous phase stripping and hold-back agents, due to the presence of high concentrations of nitrate in envisioned large-scale process conditions.

4.
Methods Mol Biol ; 2030: 403-414, 2019.
Article in English | MEDLINE | ID: mdl-31347134

ABSTRACT

In this chapter we describe a method for quantification of 20 proteinogenic amino acids by liquid chromatography-mass spectrometry which affords neither derivatization nor the use of organic solvents. Analysis of the underivatized amino acids is performed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in the positive ESI mode. Separation is achieved on a strong cation exchange (SCX) column (Luna 5 µ SCX 100 Å) with 5% acetic acid in water (A) and 75 mM ammonium acetate in water (B). Quantification is accomplished by use of d2-phenylalanine as internal standard achieving limits of detection of 5-50 nM. The method was successfully applied for the determination of proteinogenic amino acids in plant extracts.


Subject(s)
Amino Acids/analysis , Plant Extracts/agonists , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Amino Acids/chemistry , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Limit of Detection , Reproducibility of Results , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization/instrumentation , Tandem Mass Spectrometry/instrumentation
5.
Sci Rep ; 9(1): 5715, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30952881

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder leading to dementia. Aggregation of the amyloid-ß peptide (Aß) plays an important role in the disease, with Aß oligomers representing the most toxic species. Previously, we have developed the Aß oligomer eliminating therapeutic compound RD2 consisting solely of D-enantiomeric amino acid residues. RD2 has been described to have an oral bioavailability of more than 75% and to improve cognition in transgenic Alzheimer's disease mouse models after oral administration. In the present study, we further examined the stability of RD2 in simulated gastrointestinal fluids, blood plasma and liver microsomes. In addition, we have examined whether RD2 is a substrate for the human D-amino acid oxidase (hDAAO). Furthermore, metabolite profiles of RD2 incubated in human, rodent and non-rodent liver microsomes were compared across species to search for human-specific metabolites that might possibly constitute a threat when applying the compound in humans. RD2 was remarkably resistant against metabolization in all investigated media and not converted by hDAAO. Moreover, RD2 did not influence the activity of any of the tested enzymes. In conclusion, the high stability and the absence of relevant human-specific metabolites support RD2 to be safe for oral administration in humans.


Subject(s)
Amyloid beta-Peptides/metabolism , Gastrointestinal Tract/drug effects , Liver/drug effects , Oligopeptides/pharmacokinetics , Animals , Culture Media , Gastrointestinal Tract/metabolism , Humans , Liver/metabolism , Rats
6.
Article in English | MEDLINE | ID: mdl-29248770

ABSTRACT

During preclinical drug development, a method for quantification of unlabeled compounds in blood plasma samples from treatment or pharmacokinetic studies in mice is required. In the current work, a rapid, specific, sensitive and validated liquid chromatography mass-spectrometric UHPLC-ESI-QTOF-MS method was developed for the quantification of the therapeutic compound RD2 in mouse plasma. RD2 is an all-D-enantiomeric peptide developed for the treatment of Alzheimer's disease, a progressive neurodegenerative disease finally leading to dementia. Due to RD2's highly hydrophilic properties, the sample preparation and the chromatographic separation and quantification were very challenging. The chromatographic separation of RD2 and its internal standard were accomplished on an Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm particle size) within 6.5 min at 50 °C with a flow rate of 0.5 mL/min. Mobile phases consisted of water and acetonitrile with 1% formic acid and 0.025% heptafluorobutyric acid, respectively. Ions were generated by electrospray ionization (ESI) in the positive mode and the peptide was quantified by QTOF-MS. The developed extraction method for RD2 from mouse plasma revealed complete recovery. The linearity of the calibration curve was in the range of 5.3 ng/mL to 265 ng/mL (r2 > 0.999) with a lower limit of detection (LLOD) of 2.65 ng/mL and a lower limit of quantification (LLOQ) of 5.3 ng/mL. The intra-day and inter-day accuracy and precision of RD2 in plasma ranged from -0.54% to 2.21% and from 1.97% to 8.18%, respectively. Moreover, no matrix effects were observed and RD2 remained stable in extracted mouse plasma at different conditions. Using this validated bioanalytical method, plasma samples of unlabeled RD2 or placebo treated mice were analyzed. The herein developed UHPLC-ESI-QTOF-MS method is a suitable tool for the quantitative analysis of unlabeled RD2 in plasma samples of treated mice.


Subject(s)
Amyloid beta-Peptides/blood , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/isolation & purification , Animals , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Linear Models , Male , Mice , Mice, Transgenic , Oligonucleotides/isolation & purification , Oligonucleotides/metabolism , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods , Stereoisomerism
7.
Anticancer Drugs ; 26(7): 728-36, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25919318

ABSTRACT

In vitro, treosulfan (TREO) has shown high effectiveness against malignant gliomas. However, a first clinical trial for newly diagnosed glioblastoma did not show any positive effect. Even though dosing and timing might have been the reasons for this failure, it might also be that TREO does not reach the brain in sufficient amount. Surprisingly, there are no published data on TREO uptake into the brain of patients, despite extensive research on this compound. An in-vitro blood-brain barrier (BBB) model consisting of primary porcine brain capillary endothelial cells was used to determine the transport of TREO across the cell monolayer. Temozolomide (TMZ), the most widely used cytotoxic drug for malignant gliomas, served as a reference. An HPLC-ESI-MS/MS procedure was developed to detect TREO and TMZ in cell culture medium. Parallel to the experimental approach, the permeability of TREO and the reference substance across the in-vitro BBB was estimated on the basis of their physicochemical properties. The detection limit was 30 nmol/l for TREO and 10 nmol/l for TMZ. Drug transport was measured in two directions: influx, apical-to-basolateral (A-to-B), and efflux, basolateral-to-apical (B-to-A). For TREO, the A-to-B permeability was lower (1.6%) than the B-to-A permeability (3.0%). This was in contrast to TMZ, which had higher A-to-B (13.1%) than B-to-A (7.2%) permeability values. The in-vitro BBB model applied simulated the human BBB properly for TMZ. It is, therefore, reasonable to assume that the values for TREO are also meaningful. Considering the lack of noninvasive, significant alternative methods to study transport across the BBB, the porcine brain capillary endothelial cell model was efficient to collect first data for TREO that explain the disappointing clinical results for this drug against cerebral tumors.


Subject(s)
Antineoplastic Agents, Alkylating/metabolism , Blood-Brain Barrier/metabolism , Busulfan/analogs & derivatives , Dacarbazine/analogs & derivatives , Endothelial Cells/metabolism , Animals , Biological Transport , Busulfan/metabolism , Capillaries/metabolism , Cells, Cultured , Dacarbazine/metabolism , Gray Matter/blood supply , Swine , Temozolomide
SELECTION OF CITATIONS
SEARCH DETAIL
...