Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; : 131095, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986887

ABSTRACT

The efficiency of anaerobic digestion (AD) processes is intricately tied to mixing quality. This research investigates the influence of two impeller types, namely a helical ribbon impeller (HRI) and a pitched-blade impeller (PBI), on key aspects of AD. The investigation encompassed mixing dynamics, methane production, microbial communities, and the previously unexplored impact on digestate dewaterability. Results show that agitation with the PBI exhibited stratification, with bottom layer TS values of 3.1% for the PBI and 2.6% for the HRI. Nevertheless, methane yield remained unchanged, averaging 286 LN/kg VSadded. Slower mixing with the HRI achieved more uniform mixing and reduced energy requirements. Additionally, impeller type significantly affected digestate dewaterability, leading to a 3.8% increase in TS of the dewatered sludge when using the PBI. These findings highlight the importance of considering mixing not only for methane production and reduced maintenance but also for achieving optimal digestate dewaterability.

2.
Bioresour Technol ; 376: 128894, 2023 May.
Article in English | MEDLINE | ID: mdl-36931445

ABSTRACT

Enormous amounts of food waste (FW) are produced worldwide, requiring efficient disposal strategies, both economically and ecologically. Anaerobic digestion to produce biomethane is among the most promising strategies, but requires proper solutions for storage and delivery of the waste material. Here, a decentralized system for demand-oriented FW storage and its practical usability was assessed. FW was stored under batch and fed-batch strategies at 5 °C, 20 °C and 30 °C for 28 days. The results showed that FW can be stored without cooling since bacterially produced lactic acid rapidly stabilized the material and inactivated pathogens. While FW storage worked well under all storage conditions and strategies, 16S analysis revealed a distinct microbiota, which was highly characteristic for each storage temperature. Moreover, FW storage had no negative impact on methane yield and stored FW contained readily degradable substances for demand-oriented biogas production.


Subject(s)
Microbiota , Refuse Disposal , Anaerobiosis , Food , Bioreactors , Methane , Biofuels
3.
Nat Biotechnol ; 40(12): 1814-1822, 2022 12.
Article in English | MEDLINE | ID: mdl-35851376

ABSTRACT

SARS-CoV-2 surveillance by wastewater-based epidemiology is poised to provide a complementary approach to sequencing individual cases. However, robust quantification of variants and de novo detection of emerging variants remains challenging for existing strategies. We deep sequenced 3,413 wastewater samples representing 94 municipal catchments, covering >59% of the population of Austria, from December 2020 to February 2022. Our system of variant quantification in sewage pipeline designed for robustness (termed VaQuERo) enabled us to deduce the spatiotemporal abundance of predefined variants from complex wastewater samples. These results were validated against epidemiological records of >311,000 individual cases. Furthermore, we describe elevated viral genetic diversity during the Delta variant period, provide a framework to predict emerging variants and measure the reproductive advantage of variants of concern by calculating variant-specific reproduction numbers from wastewater. Together, this study demonstrates the power of national-scale WBE to support public health and promises particular value for countries without extensive individual monitoring.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Wastewater , SARS-CoV-2/genetics , COVID-19/epidemiology , RNA, Viral
4.
Sci Total Environ ; 804: 149936, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34509850

ABSTRACT

Separately collected organic fraction of municipal solid waste, also known as biowaste, is typically used to fill the available capacity of digesters at wastewater treatment plants. However, this approach might impair the use of the ensuing digestate for fertilizer production due to the presence of sewage sludge, a contaminated substrate. Worldwide, unsorted municipal solid household waste, i.e. residual waste, is still typically disposed of in landfills or incinerated, despite its high content of biodegradables and recyclables. Once efficiently separated from residual waste by mechanical processes, the biodegradables might be appropriate to substitute biowaste at wastewater treatment plants. Thus, the biowaste would be available for fertilizer production and contribute to a reduction in the demand on non-renewable fertilizers. This study aimed at determining the technical feasibility of co-digesting the mechanically separated organic fraction of residual waste with sewage sludge. Further, key parameters for the implementation of co-digestion at wastewater treatment plants were determined, namely, degradation of the solids and organics, specific methane production, flocculant demand, and dewatered sludge production. The microbial community and diversity in both mono- and co-digestion was also investigated. Semi-continuous laboratory scale experiments showed that the co-substrate derived from the residual waste provided a stable anaerobic co-digestion process, producing 206 to 245 L of methane per kg of volatiles solids added to the digester. The dewaterability of the digestate increased by 4.8 percentage points when the co-substrate was added; however, there was also an increase in the flocculant demand. The specific dewatered sludge production was 955 kg per ton of total solids of co-substrate added to the digester. Amplicon sequencing analysis provided a detailed insight into the microbial communities, which were primarily affected by the addition of co-substrate. The microbiota was fully functional and no inhibition or problems in the anaerobic digestion process were observed after co-substrate addition.


Subject(s)
Methane , Water Purification , Anaerobiosis , Bioreactors , Sewage , Solid Waste
5.
PLoS One ; 15(12): e0243241, 2020.
Article in English | MEDLINE | ID: mdl-33264369

ABSTRACT

In recent years, there has been a veritable boost in next-generation sequencing (NGS) of gene amplicons in biological and medical studies. Huge amounts of data are produced and need to be analyzed adequately. Various online and offline analysis tools are available; however, most of them require extensive expertise in computer science or bioinformatics, and often a Linux-based operating system. Here, we introduce "CoMA-Comparative Microbiome Analysis" as a free and intuitive analysis pipeline for amplicon-sequencing data, compatible with any common operating system. Moreover, the tool offers various useful services including data pre-processing, quality checking, clustering to operational taxonomic units (OTUs), taxonomic assignment, data post-processing, data visualization, and statistical appraisal. The workflow results in highly esthetic and publication-ready graphics, as well as output files in standardized formats (e.g. tab-delimited OTU-table, BIOM, NEWICK tree) that can be used for more sophisticated analyses. The CoMA output was validated by a benchmark test, using three mock communities with different sample characteristics (primer set, amplicon length, diversity). The performance was compared with that of Mothur, QIIME and QIIME2-DADA2, popular packages for NGS data analysis. Furthermore, the functionality of CoMA is demonstrated on a practical example, investigating microbial communities from three different soils (grassland, forest, swamp). All tools performed well in the benchmark test and were able to reveal the majority of all genera in the mock communities. Also for the soil samples, the results of CoMA were congruent to those of the other pipelines, in particular when looking at the key microbial players.


Subject(s)
High-Throughput Nucleotide Sequencing , Microbiota , Software , Bacteria/genetics , DNA, Bacterial/genetics , DNA, Fungal/genetics , Fungi/genetics , High-Throughput Nucleotide Sequencing/methods , Soil Microbiology , Workflow
6.
Bioresour Technol ; 300: 122671, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31901776

ABSTRACT

The aim of this work was to prove a process temperature of 45 °C as a practical alternative to commonly applied mesophilic (37 °C) and thermophilic (55 °C) anaerobic digestion (AD). Regarding methane production, no differences were found between the three temperature regimes. However, the maximum possible loading rate at 45 °C exceeded that at 37 °C and 55 °C. Pathogen inactivation at 45 °C was higher than at 37 °C and similarly efficient as at 55 °C. At each process temperature, a unique microbial community established. In addition, the archaeome at 55 °C was dominated by hydrogenotrophs, while at 37 °C and 45 °C it was dominated by acetotrophs. For the investigated substrate mixture, liquid cattle manure with wheat straw as co-substrate, 45 °C turned out to be preferable for AD. For other substrates, these findings still need to be confirmed.


Subject(s)
Manure , Methane , Anaerobiosis , Animals , Bioreactors , Cattle , Temperature , Triticum
7.
Bioresour Technol ; 269: 309-318, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30195223

ABSTRACT

Throwing longstanding habits over the pile may be necessary to improve biogas production, in particular when it comes to the process temperature. Its effect on biogas production was investigated with lab-scale reactors operated in fed-batch mode (cattle slurry and maize straw) at 10-55 °C over six months. Biochemical and microbial changes were comprehensively investigated. Production was highest and most efficient at 45 °C with an average methane yield of 166 NL kg-1 VS, and thus 12.8% and 9.6% higher than at 37 and 55 °C. Temperature significantly affected the microbiota and higher temperature provoked a shift from Bacteroidetes/Proteobacteria to Firmicutes. A transition from hydrogenotrophic to acetoclastic methanogenesis was observed from 10 to 45 °C, while the trend was reversed at 55 °C. The results contest the textbook notion of preferred and most efficient temperatures for AD and suggest reconsideration of the temperature range around 45 °C for efficient manure-based co-fermentation.


Subject(s)
Bioreactors , Manure , Methane , Anaerobiosis , Animals , Biofuels , Cattle , Fermentation , Microbiota , Temperature
8.
Sci Total Environ ; 542(Pt B): 1144-54, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26410342

ABSTRACT

Fermentation residues from biogas production are known as valuable organic fertilisers. This study deals with the effect of cattle slurry, co-digested cattle slurry, co-digested energy crops and mineral fertilisers on the activity and composition of soil microbiota. Furthermore, the effect of solid-liquid separation as a common pre-treatment of digestate was tested. The fertilising effects were analysed in an 8-week pot experiment on loamy sand using two crops, Amaranthus cruentus and Sorghum bicolor. Amaranth, as a crop with significantly higher P uptake, triggered stress for occurring soil microbes and thereby caused a reduction of microbial biomass C in the soil. Irrespective of the crop, microbial basal respiration and metabolic quotient were higher with the digestates than with the untreated slurry or the mineral treatments. Community level physiological profiles with MicroResp showed considerable differences among the treatments, with particularly strong effects of solid-liquid separation. Similar results were also found on a structural level (PCR-DGGE). Alkaline phosphatase gene analyses revealed high sensitivity to different fertilisation regimes.


Subject(s)
Biofuels , Crops, Agricultural/metabolism , Fertilizers , Phosphorus/metabolism , Soil Microbiology , Agriculture , Soil/chemistry , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...