Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Phys Rev Lett ; 129(4): 042503, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35939002

ABSTRACT

The rate at which helium (^{4}He) and deuterium (d) fuse together to produce lithium-6 (^{6}Li) and a γ ray, ^{4}He(d,γ)^{6}Li, is a critical puzzle piece in resolving the discrepancy between big bang predictions and astronomical observations for the primordial abundance of ^{6}Li. The accurate determination of this radiative capture rate requires the quantitative and predictive description of the fusion probability across the big bang energy window (30 keV≲E≲400 keV), where measurements are hindered by low counting rates. We present first-principle (or, ab initio) predictions of the ^{4}He(d,γ)^{6}Li astrophysical S factor using validated nucleon-nucleon and three-nucleon interactions derived within the framework of chiral effective field theory. By employing the ab initio no-core shell model with continuum to describe ^{4}He-d scattering dynamics and bound ^{6}Li product on an equal footing, we accurately and consistently determine the contributions of the main electromagnetic transitions driving the radiative capture process. Our results reveal an enhancement of the capture probability below 100 keV owing to previously neglected magnetic dipole (M1) transitions and reduce by an average factor of 7 the uncertainty of the thermonuclear capture rate between 0.002 and 2 GK.

2.
Phys Rev Lett ; 118(26): 262502, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28707906

ABSTRACT

How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics has been the greatest challenge in answering this question. The chiral effective field theory description of the nuclear force now makes this possible but requires certain parameters that are not uniquely determined. Defining the nuclear force needs identification of observables sensitive to the different parametrizations. From a measurement of proton elastic scattering on ^{10}C at TRIUMF and ab initio nuclear reaction calculations, we show that the shape and magnitude of the measured differential cross section is strongly sensitive to the nuclear force prescription.

SELECTION OF CITATIONS
SEARCH DETAIL
...