Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Open Res Eur ; 3: 69, 2023.
Article in English | MEDLINE | ID: mdl-38665265

ABSTRACT

Background: The transition to a climate neutral society such as that envisaged in the European Union Green Deal requires careful and comprehensive planning. Integrated assessment models (IAMs) and energy system optimisation models (ESOMs) are both commonly used for policy advice and in the process of policy design. In Europe, a vast landscape of these models has emerged and both kinds of models have been part of numerous model comparison and model linking exercises. However, IAMs and ESOMs have rarely been compared or linked with one another. Methods: This study conducts an explorative comparison and identifies possible flows of information between 11 of the integrated assessment and energy system models in the European Climate and Energy Modelling Forum. The study identifies and compares regional aggregations and commonly reported variables. We define harmonised regions and a subset of shared result variables that enable the comparison of scenario results across the models. Results: The results highlight how power generation and demand development are related and driven by regional and sectoral drivers. They also show that demand developments like for hydrogen can be linked with power generation potentials such as onshore wind power. Lastly, the results show that the role of nuclear power is related to the availability of wind resources. Conclusions: This comparison and analysis of modelling results across model type boundaries provides modellers and policymakers with a better understanding of how to interpret both IAM and ESOM results. It also highlights the need for community standards for region definitions and information about reported variables to facilitate future comparisons of this kind. The comparison shows that regional aggregations might conceal differences within regions that are potentially of interest for national policy makers thereby indicating a need for national-level analysis.

2.
F1000Res ; 11: 896, 2022.
Article in English | MEDLINE | ID: mdl-35967971

ABSTRACT

Energy enables the functioning of modern society. However, humanity's reliance on fossil fuels since the industrial revolution has contributed to many societal problems including climate change, environmental degradation and pollution, and the transition to a renewable and carbon-free energy system is one of the grand challenges for the 21st century. The aim of this editorial is to outline the importance of a fast and transparent sharing of energy research and discuss key themes of the Energy Gateway of F1000Research.


Subject(s)
Fossil Fuels
3.
Open Res Eur ; 1: 74, 2021.
Article in English | MEDLINE | ID: mdl-37645194

ABSTRACT

The open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable development. It bridges the gap between scenario processing and visualisation solutions that are "hard-wired" to specific modelling frameworks and generic data analysis or plotting packages. The package aims to facilitate reproducibility and reliability of scenario processing, validation and analysis by providing well-tested and documented methods for working with timeseries data in the context of climate policy and energy systems. It supports various data formats, including sub-annual resolution using continuous time representation and "representative timeslices". The pyam package can be useful for modelers generating scenario results using their own tools as well as researchers and analysts working with existing scenario ensembles such as those supporting the IPCC reports or produced in research projects. It is structured in a way that it can be applied irrespective of a user's domain expertise or level of Python knowledge, supporting experts as well as novice users. The code base is implemented following best practices of collaborative scientific-software development. This manuscript describes the design principles of the package and the types of data which can be handled. The usefulness of pyam is illustrated by highlighting several recent applications.

4.
Nat Commun ; 11(1): 2096, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350258

ABSTRACT

Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.

5.
Nature ; 573(7774): 357-363, 2019 09.
Article in English | MEDLINE | ID: mdl-31534246

ABSTRACT

To understand how global warming can be kept well below 2 degrees Celsius and even 1.5 degrees Celsius, climate policy uses scenarios that describe how society could reduce its greenhouse gas emissions. However, current scenarios have a key weakness: they typically focus on reaching specific climate goals in 2100. This choice may encourage risky pathways that delay action, reach higher-than-acceptable mid-century warming, and rely on net removal of carbon dioxide thereafter to undo their initial shortfall in reductions of emissions. Here we draw on insights from physical science to propose a scenario framework that focuses on capping global warming at a specific maximum level with either temperature stabilization or reversal thereafter. The ambition of climate action until carbon neutrality determines peak warming, and can be followed by a variety of long-term states with different sustainability implications. The approach proposed here closely mirrors the intentions of the United Nations Paris Agreement, and makes questions of intergenerational equity into explicit design choices.


Subject(s)
Climate Change , Conservation of Natural Resources/methods , Temperature , Goals , United Nations
SELECTION OF CITATIONS
SEARCH DETAIL
...