Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Subst Use Misuse ; 59(1): 79-89, 2024.
Article in English | MEDLINE | ID: mdl-37936270

ABSTRACT

BACKGROUND AND OBJECTIVES: Use of psychotropic substances in childhood has been associated with both impulsivity and other manifestations of poor executive function as well as escalation over time to use of progressively stronger substances. However, how this relationship may start in earlier childhood has not been well explored. Here, we investigated the neurobehavioral correlates of daily caffeinated soda consumption in preadolescent children and examined whether caffeinated soda intake is associated with a higher risk of subsequent alcohol initiation. METHODS: Using Adolescent Brain Cognitive Development study data (N = 2,092), we first investigated cross-sectional relationships between frequent caffeinated soda intake and well-known risk factors of substance misuse: impaired working memory, high impulsivity, and aberrant reward processing. We then examined whether caffeinated soda intake at baseline predicts more alcohol sipping at 12 months follow-up using a machine learning algorithm. RESULTS: Daily consumption of caffeinated soda was cross-sectionally associated with neurobehavioral risk factors for substance misuse such as higher impulsivity scores and lower working memory performance. Furthermore, caffeinated soda intake predicted a 2.04 times greater likelihood of alcohol sipping after 12 months, even after controlling for rates of baseline alcohol sipping rates. CONCLUSIONS: These findings suggest that previous linkages between caffeine and substance use in adolescence also extend to younger initiation, and may stem from core neurocognitive features thought conducive to substance initiation.


Subject(s)
Beverages , Carbonated Beverages , Adolescent , Humans , Child , Beverages/adverse effects , Caffeine , Risk Factors
2.
3.
PLoS One ; 18(6): e0286632, 2023.
Article in English | MEDLINE | ID: mdl-37267307

ABSTRACT

Previous literature suggests that a balance between Pavlovian and instrumental decision-making systems is critical for optimal decision-making. Pavlovian bias (i.e., approach toward reward-predictive stimuli and avoid punishment-predictive stimuli) often contrasts with the instrumental response. Although recent neuroimaging studies have identified brain regions that may be related to Pavlovian bias, including the dorsolateral prefrontal cortex (dlPFC), it is unclear whether a causal relationship exists. Therefore, we investigated whether upregulation of the dlPFC using transcranial current direct stimulation (tDCS) would reduce Pavlovian bias. In this double-blind study, participants were assigned to the anodal or the sham group; they received stimulation over the right dlPFC for 3 successive days. On the last day, participants performed a reinforcement learning task known as the orthogonalized go/no-go task; this was used to assess each participant's degree of Pavlovian bias in reward and punishment domains. We used computational modeling and hierarchical Bayesian analysis to estimate model parameters reflecting latent cognitive processes, including Pavlovian bias, go bias, and choice randomness. Several computational models were compared; the model with separate Pavlovian bias parameters for reward and punishment domains demonstrated the best model fit. When using a behavioral index of Pavlovian bias, the anodal group showed significantly lower Pavlovian bias in the punishment domain, but not in the reward domain, compared with the sham group. In addition, computational modeling showed that Pavlovian bias parameter in the punishment domain was lower in the anodal group than in the sham group, which is consistent with the behavioral findings. The anodal group also showed a lower go bias and choice randomness, compared with the sham group. These findings suggest that anodal tDCS may lead to behavioral suppression or change in Pavlovian bias in the punishment domain, which will help to improve comprehension of the causal neural mechanism.


Subject(s)
Dorsolateral Prefrontal Cortex , Transcranial Direct Current Stimulation , Humans , Prefrontal Cortex/physiology , Punishment , Bayes Theorem , Transcranial Direct Current Stimulation/methods
4.
Neurosci Biobehav Rev ; 145: 105008, 2023 02.
Article in English | MEDLINE | ID: mdl-36549378

ABSTRACT

Research in computational psychiatry is dominated by models of behavior. Subjective experience during behavioral tasks is not well understood, even though it should be relevant to understanding the symptoms of psychiatric disorders. Here, we bridge this gap and review recent progress in computational models for subjective feelings. For example, happiness reflects not how well people are doing, but whether they are doing better than expected. This dependence on recent reward prediction errors is intact in major depression, although depressive symptoms lower happiness during tasks. Uncertainty predicts subjective feelings of stress in volatile environments. Social prediction errors influence feelings of self-worth more in individuals with low self-esteem despite a reduced willingness to change beliefs due to social feedback. Measuring affective state during behavioral tasks provides a tool for understanding psychiatric symptoms that can be dissociable from behavior. When smartphone tasks are collected longitudinally, subjective feelings provide a potential means to bridge the gap between lab-based behavioral tasks and real-life behavior, emotion, and psychiatric symptoms.


Subject(s)
Depressive Disorder, Major , Psychiatry , Humans , Emotions , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...