Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
JCI Insight ; 9(5)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456503

ABSTRACT

Colon cancer affects people of all ages. However, its frequency, as well as the related morbidity and mortality, are high among older adults. The complex physiological changes in the aging gut substantially limit the development of cancer therapies. Here, we identify a potentially unique intestinal microenvironment that is linked with an increased risk of colon cancer in older adults. Our findings show that aging markedly influenced persistent fucosylation of the apical surfaces of intestinal epithelial cells, which resulted in a favorable environment for tumor growth. Furthermore, our findings shed light on the importance of the host-commensal interaction, which facilitates the dysregulation of fucosylation and promotes tumor growth as people get older. We analyzed colonic microbial populations at the species level to find changes associated with aging that could contribute to the development of colon cancer. Analysis of single-cell RNA-sequencing data from previous publications identified distinct epithelial cell subtypes involved in dysregulated fucosylation in older adults. Overall, our study provides compelling evidence that excessive fucosylation is associated with the development of colon cancer, that age-related changes increase vulnerability to colon cancer, and that a dysbiosis in microbial diversity and metabolic changes in the homeostasis of older mice dysregulate fucosylation levels with age.


Subject(s)
Colonic Neoplasms , Humans , Mice , Animals , Aged , Colonic Neoplasms/metabolism , Glycosylation , Epithelial Cells/metabolism , Intestinal Mucosa/pathology , Tumor Microenvironment
2.
Transl Res ; 270: 24-41, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38556110

ABSTRACT

Peripheral neuropathy (PN) is a severe and frequent complication of obesity, prediabetes, and type 2 diabetes characterized by progressive distal-to-proximal peripheral nerve degeneration. However, a comprehensive understanding of the mechanisms underlying PN, and whether these mechanisms change during PN progression, is currently lacking. Here, gene expression data were obtained from distal (sciatic nerve; SCN) and proximal (dorsal root ganglia; DRG) injury sites of a high-fat diet (HFD)-induced mouse model of obesity/prediabetes at early and late disease stages. Self-organizing map and differentially expressed gene analyses followed by pathway enrichment analysis identified genes and pathways altered across disease stage and injury site. Pathways related to immune response, inflammation, and glucose and lipid metabolism were consistently dysregulated with HFD-induced PN, irrespective of injury site. However, regulation of oxidative stress was unique to the SCN while dysregulated Hippo and Notch signaling were only observed in the DRG. The role of the immune system and inflammation in disease progression was supported by an increase in the percentage of immune cells in the SCN with PN progression. Finally, when comparing these data to transcriptomic signatures from human patients with PN, we observed conserved pathways related to metabolic dysregulation across species, highlighting the translational relevance of our mouse data. Our findings demonstrate that PN is associated with distinct site-specific molecular re-programming in the peripheral nervous system, identifying novel, clinically relevant therapeutic targets.

4.
Geroscience ; 46(3): 3387-3403, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38302843

ABSTRACT

Accurate prediction of biological age can inform public health measures to extend healthy lifespans and reduce chronic conditions. Multiple theoretical models and methods have been developed; however, their applicability and accuracy are still not extensive. Here, we report Differential Aging and Health Index (DAnHI), a novel measure of age deviation, developed using physical and serum biomarkers from four million individuals in Korea's National Health Screening Program. Participants were grouped into aging statuses (< 26 vs. ≥ 26, < 27 vs. ≥ 27, …, < 75 vs. ≥ 75 years) as response variables in a binary logistic regression model with thirteen biomarkers as independent variables. DAnHI for each individual was calculated as the weighted mean of their relative probabilities of being classified into each older age status, based on model ages ranging from 26 to 75. DAnHI in our large study population showed a steady increase with the increase in age and was positively associated with death after adjusting for chronological age. However, the effect size of DAnHI on the risk of death varied according to the age group and sex. The hazard ratio was highest in the 50-59-year age group and then decreased as the individuals aged. This study demonstrates that routine health check-up biomarkers can be integrated into a quantitative measure for predicting aging-related health status and death via appropriate statistical models and methodology. Our DAnHI-based results suggest that the same level of aging-related health status does not indicate the same degree of risk for death.


Subject(s)
Aging , Public Health , Humans , Aged , Aging/physiology , Proportional Hazards Models , Biomarkers , Republic of Korea
5.
Sci Adv ; 10(1): eadj1120, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38170765

ABSTRACT

The dual role of CD8+ T cells in influenza control and lung pathology is increasingly appreciated. To explore whether protective and pathological functions can be linked to specific subsets, we dissected CD8+ T responses in influenza-infected murine lungs. Our single-cell RNA-sequencing (scRNA-seq) analysis revealed notable diversity in CD8+ T subpopulations during peak viral load and infection-resolved state. While enrichment of a Cxcr3hi CD8+ T effector subset was associated with a more robust cytotoxic response, both CD8+ T effector and central memory exhibited equally potent effector potential. The scRNA-seq analysis identified unique regulons regulating the cytotoxic response in CD8+ T cells. The late-stage CD8+ T blockade in influenza-cleared lungs or continuous CXCR3 blockade mitigated lung injury without affecting viral clearance. Furthermore, adoptive transfer of wild-type CD8+ T cells exacerbated influenza lung pathology in Cxcr3-/- mice. Collectively, our data imply that CXCR3 interception could have a therapeutic effect in preventing influenza-linked lung injury.


Subject(s)
Influenza, Human , Lung Injury , Animals , Humans , Mice , CD8-Positive T-Lymphocytes , Lung , Mice, Inbred C57BL , Mice, Knockout , Receptors, Chemokine
6.
Brain ; 147(2): 665-679, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37721161

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a complex, fatal neurodegenerative disease. Disease pathophysiology is incompletely understood but evidence suggests gut dysbiosis occurs in ALS, linked to impaired gastrointestinal integrity, immune system dysregulation and altered metabolism. Gut microbiome and plasma metabolome have been separately investigated in ALS, but little is known about gut microbe-plasma metabolite correlations, which could identify robust disease biomarkers and potentially shed mechanistic insight. Here, gut microbiome changes were longitudinally profiled in ALS and correlated to plasma metabolome. Gut microbial structure at the phylum level differed in ALS versus control participants, with differential abundance of several distinct genera. Unsupervised clustering of microbe and metabolite levels identified modules, which differed significantly in ALS versus control participants. Network analysis found several prominent amplicon sequence variants strongly linked to a group of metabolites, primarily lipids. Similarly, identifying the features that contributed most to case versus control separation pinpointed several bacteria correlated to metabolites, predominantly lipids. Mendelian randomization indicated possible causality from specific lipids related to fatty acid and acylcarnitine metabolism. Overall, the results suggest ALS cases and controls differ in their gut microbiome, which correlates with plasma metabolites, particularly lipids, through specific genera. These findings have the potential to identify robust disease biomarkers and shed mechanistic insight into ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Gastrointestinal Microbiome , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/genetics , Gastrointestinal Microbiome/genetics , Biomarkers , Lipids
7.
PLoS Pathog ; 19(12): e1011847, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38060620

ABSTRACT

The upper respiratory tract (nasopharynx or NP) is the first site of influenza replication, allowing the virus to disseminate to the lower respiratory tract or promoting community transmission. The host response in the NP regulates an intricate balance between viral control and tissue pathology. The hyper-inflammatory responses promote epithelial injury, allowing for increased viral dissemination and susceptibility to secondary bacterial infections. However, the pathologic contributors to influenza upper respiratory tissue pathology are incompletely understood. In this study, we investigated the role of interleukin IL-17 recetor A (IL-17RA) as a modulator of influenza host response and inflammation in the upper respiratory tract. We used a combined experimental approach involving IL-17RA-/- mice and an air-liquid interface (ALI) epithelial culture model to investigate the role of IL-17 response in epithelial inflammation, barrier function, and tissue pathology. Our data show that IL-17RA-/- mice exhibited significantly reduced neutrophilia, epithelial injury, and viral load. The reduced NP inflammation and epithelial injury in IL-17RA-/- mice correlated with increased resistance against co-infection by Streptococcus pneumoniae (Spn). IL-17A treatment, while potentiating the apoptosis of IAV-infected epithelial cells, caused bystander cell death and disrupted the barrier function in ALI epithelial model, supporting the in vivo findings.


Subject(s)
Influenza, Human , Animals , Mice , Humans , Influenza, Human/complications , Interleukin-17/genetics , Interleukin-17/metabolism , Inflammation/complications , Streptococcus pneumoniae/metabolism , Interleukins
8.
J Neurochem ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37965761

ABSTRACT

Type 2 diabetes (T2D) is a complex chronic metabolic disorder characterized by hyperglycemia because of insulin resistance. Diabetes with chronic hyperglycemia may alter brain metabolism, including brain glucose and neurotransmitter levels; however, detailed, longitudinal studies of metabolic alterations in T2D are lacking. To shed insight, here, we characterized the consequences of poorly controlled hyperglycemia on neurochemical profiles that reflect metabolic alterations of the brain in both humans and animal models of T2D. Using in vivo 1 H magnetic resonance spectroscopy, we quantified 12 metabolites cross-sectionally in T2D patients and 20 metabolites longitudinally in T2D db/db mice versus db+ controls. We found significantly elevated brain glucose (91%, p < 0.001), taurine (22%, p = 0.02), glucose+taurine (56%, p < 0.001), myo-inositol (12%, p = 0.02), and choline-containing compounds (10%, p = 0.01) in T2D patients versus age- and sex-matched controls, findings consistent with measures in T2D db/db versus control db+ littermates. In mice, hippocampal and striatal neurochemical alterations in brain glucose, ascorbate, creatine, phosphocreatine, γ-aminobutyric acid, glutamate, glutamine, glutathione, glycerophosphoryl-choline, lactate, myo-inositol, and taurine persisted in db/db mice with chronic disease progression from 16 to 48 weeks of age, which were distinct from control db+ mice. Overall, our study demonstrates the utility of 1 H magnetic resonance spectroscopy as a non-invasive tool for characterizing and monitoring brain metabolic changes with T2D progression.

9.
Dis Model Mech ; 16(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37791586

ABSTRACT

Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are common complications of type 1 (T1D) and type 2 (T2D) diabetes. However, the mechanisms underlying pathogenesis of these complications are unclear. In this study, we optimized a streptozotocin-induced db/+ murine model of T1D and compared it to our established db/db T2D mouse model of the same C57BLKS/J background. Glomeruli and sciatic nerve transcriptomic data from T1D and T2D mice were analyzed by self-organizing map and differential gene expression analysis. Consistent with prior literature, pathways related to immune function and inflammation were dysregulated in both complications in T1D and T2D mice. Gene-level analysis identified a high degree of concordance in shared differentially expressed genes (DEGs) in both complications and across diabetes type when using mice from the same cohort and genetic background. As we have previously shown a low concordance of shared DEGs in DPN when using mice from different cohorts and genetic backgrounds, this suggests that genetic background may influence diabetic complications. Collectively, these findings support the role of inflammation and indicate that genetic background is important in complications of both T1D and T2D.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Diabetic Neuropathies , Humans , Mice , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/genetics , Disease Models, Animal , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Transcriptome/genetics , Diabetic Neuropathies/complications , Gene Expression Profiling , Inflammation/complications
10.
Nat Rev Neurol ; 19(10): 617-634, 2023 10.
Article in English | MEDLINE | ID: mdl-37709948

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron degeneration with typical survival of only 2-5 years from diagnosis. The causes of ALS are multifactorial: known genetic mutations account for only around 70% of cases of familial ALS and 15% of sporadic cases, and heritability estimates range from 8% to 61%, indicating additional causes beyond genetics. Consequently, interest has grown in environmental contributions to ALS risk and progression. The gene-time-environment hypothesis posits that ALS onset occurs through an interaction of genes with environmental exposures during ageing. An alternative hypothesis, the multistep model of ALS, suggests that several hits, at least some of which could be environmental, are required to trigger disease onset, even in the presence of highly penetrant ALS-associated mutations. Studies have sought to characterize the ALS exposome - the lifetime accumulation of environmental exposures that increase disease risk and affect progression. Identifying the full scope of environmental toxicants that enhance ALS risk raises the prospect of preventing disease by eliminating or mitigating exposures. In this Review, we summarize the evidence for an ALS exposome, discussing the strengths and limitations of epidemiological studies that have identified contributions from various sources. We also consider potential mechanisms of exposure-mediated toxicity and suggest future directions for ALS exposome research.


Subject(s)
Amyotrophic Lateral Sclerosis , Exposome , Humans , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/genetics , Environmental Exposure/adverse effects , Mutation
11.
Front Toxicol ; 5: 1278066, 2023.
Article in English | MEDLINE | ID: mdl-37692902

ABSTRACT

[This corrects the article DOI: 10.3389/ftox.2023.1147608.].

12.
Parasit Vectors ; 16(1): 239, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464386

ABSTRACT

BACKGROUND: The mechanisms underlying the clinical outcome disparity during human infection with Giardia duodenalis are still unclear. In recent years, evidence has pointed to the roles of host factors as well as parasite's genetic heterogeneity as major contributing factors in the development of symptomatic human giardiasis. However, it remains contested as to how only a small fraction of individuals infected with G. duodenalis develop clinical gastrointestinal manifestations, whereas the majority of infected individuals remain asymptomatic. Here, we demonstrate that diversity in the fecal microbiome correlates with the clinical outcome of human giardiasis. METHODS: The genetic heterogeneity of G. duodenalis clinical isolates from human subjects with asymptomatic and symptomatic giardiasis was determined using a multilocus analysis approach. We also assessed the genetic proximity of G. duodenalis isolates by constructing phylogenetic trees using the maximum likelihood. Total genomic DNA (gDNA) from fecal specimens was utilized to construct DNA libraries, followed by performing paired-end sequencing using the HiSeq X platform. The Kraken2-generated, filtered FASTQ files were assigned to microbial metabolic pathways and functions using HUMAnN 3.04 and the UniRef90 diamond annotated full reference database (version 201901b). Results from HUMAnN for each sample were evaluated for differences among the biological groups using the Kruskal-Wallis non-parametric test with a post hoc Dunn test. RESULTS: We found that a total of 8/11 (72.73%) human subjects were infected with assemblage A (sub-assemblage AII) of G. duodenalis, whereas 3/11 (27.27%) human subjects in the current study were infected with assemblage B of the parasite. We also found that the parasite's genetic diversity was not associated with the clinical outcome of the infection. Further phylogenetic analysis based on the tpi and gdh loci indicated that those clinical isolates belonging to assemblage A of G. duodenalis subjects clustered compactly together in a monophyletic clade despite being isolated from human subjects with asymptomatic and symptomatic human giardiasis. Using a metagenomic shotgun sequencing approach, we observed that infected individuals with asymptomatic and symptomatic giardiasis represented distinctive microbial diversity profiles, and that both were distinguishable from the profiles of healthy volunteers. CONCLUSIONS: These findings identify a potential association between host microbiome disparity with the development of clinical disease during human giardiasis, and may provide insights into the mechanisms by which the parasite induces pathological changes in the gut. These observations may also lead to the development of novel selective therapeutic targets for preventing human enteric microbial infections.


Subject(s)
Giardia lamblia , Giardiasis , Microbiota , Humans , Giardiasis/parasitology , Phylogeny , Genotype , Feces/parasitology , Multilocus Sequence Typing
13.
Front Toxicol ; 5: 1147608, 2023.
Article in English | MEDLINE | ID: mdl-37441091

ABSTRACT

Inference of toxicological and mechanistic properties of untested chemicals through structural or biological similarity is a commonly employed approach for initial chemical characterization and hypothesis generation. We previously developed a web-based application, Tox21Enricher-Grails, on the Grails framework that identifies enriched biological/toxicological properties of chemical sets for the purpose of inferring properties of untested chemicals within the set. It was able to detect significantly overrepresented biological (e.g., receptor binding), toxicological (e.g., carcinogenicity), and chemical (e.g., toxicologically relevant chemical substructures) annotations within sets of chemicals screened in the Tox21 platform. Here, we present an R Shiny application version of Tox21Enricher-Grails, Tox21Enricher-Shiny, with more robust features and updated annotations. Tox21Enricher-Shiny allows users to interact with the web application component (available at http://hurlab.med.und.edu/Tox21Enricher/) through a user-friendly graphical user interface or to directly access the application's functions through an application programming interface. This version now supports InChI strings as input in addition to CASRN and SMILES identifiers. Input chemicals that contain certain reactive functional groups (nitrile, aldehyde, epoxide, and isocyanate groups) may react with proteins in cell-based Tox21 assays: this could cause Tox21Enricher-Shiny to produce spurious enrichment analysis results. Therefore, this version of the application can now automatically detect and ignore such problematic chemicals in a user's input. The application also offers new data visualizations, and the architecture has been greatly simplified to allow for simple deployment, version control, and porting. The application may be deployed onto a Posit Connect or Shiny server, and it uses Postgres for database management. As other Tox21-related tools are being migrated to the R Shiny platform, the development of Tox21Enricher-Shiny is a logical transition to use R's strong data analysis and visualization capacities and to provide aesthetic and developmental consistency with other Tox21 applications developed by the Division of Translational Toxicology (DTT) at the National Institute of Environmental Health Sciences (NIEHS).

15.
J Virol ; 97(7): e0039423, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37338373

ABSTRACT

Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections during our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, transforming growth factor ß1 (TGF-ß1), driving cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-ß1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT. IMPORTANCE We have previously shown that RSV infects ciliated cells on the apical side of the lung airway. RSV-induced cytoskeletal inflammation contributes to an uneven increase in the height of the airway epithelium, resembling noncanonical bronchial wall thickening. RSV infection changes epithelial cell morphology by modulating actin-protein 2/3 complex-driven actin polymerization. Therefore, it is prudent to investigate whether RSV-induced cell morphological changes contribute to EMT. Our data indicate that RSV does not induce EMT in at least three different epithelial in vitro models: an epithelial cell line, primary epithelial cells, and pseudostratified bronchial airway epithelium.


Subject(s)
Respiratory Syncytial Virus Infections , Aged , Child , Child, Preschool , Humans , Infant , Actins/metabolism , Cell Line , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Viruses/metabolism , Transforming Growth Factor beta1
16.
J Neurochem ; 166(2): 367-388, 2023 07.
Article in English | MEDLINE | ID: mdl-37328915

ABSTRACT

Schwann cells (SCs) support peripheral nerves under homeostatic conditions, independent of myelination, and contribute to damage in prediabetic peripheral neuropathy (PN). Here, we used single-cell RNA sequencing to characterize the transcriptional profiles and intercellular communication of SCs in the nerve microenvironment using the high-fat diet-fed mouse, which mimics human prediabetes and neuropathy. We identified four major SC clusters, myelinating, nonmyelinating, immature, and repair in healthy and neuropathic nerves, in addition to a distinct cluster of nerve macrophages. Myelinating SCs acquired a unique transcriptional profile, beyond myelination, in response to metabolic stress. Mapping SC intercellular communication identified a shift in communication, centered on immune response and trophic support pathways, which primarily impacted nonmyelinating SCs. Validation analyses revealed that neuropathic SCs become pro-inflammatory and insulin resistant under prediabetic conditions. Overall, our study offers a unique resource for interrogating SC function, communication, and signaling in nerve pathophysiology to help inform SC-specific therapies.


Subject(s)
Peripheral Nervous System Diseases , Prediabetic State , Mice , Humans , Animals , Myelin Sheath/metabolism , Prediabetic State/genetics , Prediabetic State/metabolism , Single-Cell Gene Expression Analysis , Schwann Cells/metabolism , Peripheral Nerves , Peripheral Nervous System Diseases/metabolism
17.
Neuron ; 111(17): 2623-2641, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37263266

ABSTRACT

Diabetes prevalence continues to climb with the aging population. Type 2 diabetes (T2D), which constitutes most cases, is metabolically acquired. Diabetic peripheral neuropathy (DPN), the most common microvascular complication, is length-dependent damage to peripheral nerves. DPN pathogenesis is complex, but, at its core, it can be viewed as a state of impaired metabolism and bioenergetics failure operating against the backdrop of long peripheral nerve axons supported by glia. This unique peripheral nerve anatomy and the injury consequent to T2D underpins the distal-to-proximal symptomatology of DPN. Earlier work focused on the impact of hyperglycemia on nerve damage and bioenergetics failure, but recent evidence additionally implicates contributions from obesity and dyslipidemia. This review will cover peripheral nerve anatomy, bioenergetics, and glia-axon interactions, building the framework for understanding how hyperglycemia and dyslipidemia induce bioenergetics failure in DPN. DPN and painful DPN still lack disease-modifying therapies, and research on novel mechanism-based approaches is also covered.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Dyslipidemias , Hyperglycemia , Humans , Aged , Diabetic Neuropathies/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Peripheral Nerves , Hyperglycemia/complications , Hyperglycemia/metabolism , Dyslipidemias/complications , Dyslipidemias/metabolism
18.
Neurol Genet ; 9(4): e200079, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37293291

ABSTRACT

Background and Objectives: Most patients with amyotrophic lateral sclerosis (ALS) lack a monogenic mutation. This study evaluates ALS cumulative genetic risk in an independent Michigan and Spanish replication cohort using polygenic scores. Methods: Participant samples from University of Michigan were genotyped and assayed for the chromosome 9 open reading frame 72 hexanucleotide expansion. Final cohort size was 219 ALS and 223 healthy controls after genotyping and participant filtering. Polygenic scores excluding the C9 region were generated using an independent ALS genome-wide association study (20,806 cases, 59,804 controls). Adjusted logistic regression and receiver operating characteristic curves evaluated the association and classification between polygenic scores and ALS status, respectively. Population attributable fractions and pathway analyses were conducted. An independent Spanish study sample (548 cases, 2,756 controls) was used for replication. Results: Polygenic scores constructed from 275 single-nucleotide variation (SNV) had the best model fit in the Michigan cohort. An SD increase in ALS polygenic score associated with 1.28 (95% CI 1.04-1.57) times higher odds of ALS with area under the curve of 0.663 vs a model without the ALS polygenic score (p value = 1 × 10-6). The population attributable fraction of the highest 20th percentile of ALS polygenic scores, relative to the lowest 80th percentile, was 4.1% of ALS cases. Genes annotated to this polygenic score enriched for important ALS pathomechanisms. Meta-analysis with the Spanish study, using a harmonized 132 single nucleotide variation polygenic score, yielded similar logistic regression findings (odds ratio: 1.13, 95% CI 1.04-1.23). Discussion: ALS polygenic scores can account for cumulative genetic risk in populations and reflect disease-relevant pathways. If further validated, this polygenic score will inform future ALS risk models.

19.
bioRxiv ; 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36993657

ABSTRACT

Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections in our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, TGF-ß1-driven cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-ß1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT.

20.
iScience ; 26(3): 106164, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36915697

ABSTRACT

Obesity is a growing global concern in adults and youth with a parallel rise in associated complications, including cognitive impairment. Obesity induces brain inflammation and activates microglia, which contribute to cognitive impairment by aberrantly phagocytosing synaptic spines. Local and systemic signals, such as inflammatory cytokines and metabolites likely participate in obesity-induced microglial activation. However, the precise mechanisms mediating microglial activation during obesity remain incompletely understood. Herein, we leveraged our mouse model of high-fat diet (HFD)-induced obesity, which mirrors human obesity, and develops hippocampal-dependent cognitive impairment. We assessed hippocampal microglial activation by morphological and single-cell transcriptomic analysis to evaluate this heterogeneous, functionally diverse, and dynamic class of cells over time after 1 and 3 months of HFD. HFD altered cell-to-cell communication, particularly immune modulation and cellular adhesion signaling, and induced a differential gene expression signature of protein processing in the endoplasmic reticulum in a time-dependent manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...