Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(6): 9800-9808, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571205

ABSTRACT

A special differential interferometer consisting of two gratings was developed for diagnostics of plasma density. Compared with other differential interferometers, our system has an important advantage that the shear distance, shear direction, and fringe width can be adjusted independently, enabling easy control of the parameters. This feature allows precise tuning of the two probe beams in the interferometer for rigorous differential phase diagnosis and more accurate information of the plasma density can be obtained. The double-grating-based differential interferometer was tested for diagnostics of the laser-produced plasma which was generated by focusing a 1 TW/35 fs Ti:sapphire laser pulse in a gas jet with a 100 µm orifice diameter. It was confirmed that our differential interferometer can provide more reliable and accurate plasma density information, especially for plasmas with a high spatial gradient in density.

2.
Sci Rep ; 13(1): 4233, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36918732

ABSTRACT

We present a novel scheme to obtain robust, narrowband, and tunable THz emission using a nano-dimensional overdense plasma target, irradiated by two counter-propagating detuned laser pulses. So far, no narrowband THz sources with a field strength of GV/m-level have been reported from laser-solid interaction (mostly half-or single-cycle THz pulses with only broadband frequency spectrum). From two- and three-dimensional particle-in-cell simulations, we find that the strong plasma current generated by the beat ponderomotive force in the colliding region, produces beat-frequency radiation in the THz range. Here we report intense THz pulses [Formula: see text]THz) with an unprecedentedly high peak field strength of 11.9 GV/m and spectral width [Formula: see text], which leads to a regime of an extremely bright narrowband THz source of TW/cm[Formula: see text], suitable for various ambitious applications.

3.
Sci Adv ; 5(11): eaav7940, 2019 11.
Article in English | MEDLINE | ID: mdl-31803828

ABSTRACT

A typical laser-plasma accelerator (LPA) is driven by a single, ultrarelativistic laser pulse from terawatt- or petawatt-class lasers. Recently, there has been some theoretical work on the use of copropagating two-color laser pulses (CTLP) for LPA research. Here, we demonstrate the first LPA driven by CTLP where we observed substantial electron energy enhancements. Those results have been further confirmed in a practical application, where the electrons are used in a bremsstrahlung-based positron generation configuration, which led to a considerable boost in the positron energy as well. Numerical simulations suggest that the trailing second harmonic relativistic laser pulse is capable of sustaining the acceleration structure for much longer distances after the preceding fundamental pulse is depleted in the plasma. Therefore, our work confirms the merits of driving LPAs by two-color pulses and paves the way toward a downsizing of LPAs, making their potential applications in science and technology extremely attractive and affordable.

4.
Sci Rep ; 8(1): 145, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317689

ABSTRACT

Emission of radiation from electrons undergoing plasma oscillations (POs) at the plasma frequency has attracted interest because of the existence of intriguing and non-trivial coupling mechanism between the electrostatic PO and the emitted electromagnetic wave. While broadband emission from plasma waves in inhomogeneous plasma is well known, the underlying physics of narrowband emission at the plasma frequency observed in experiments and in solar radio-bursts is obscure. Here we show that a spatially-localized plasma dipole oscillation (PDO) can be generated when electrons are trapped in a moving train of potential wells produced by the ponderomotive force of two slightly detuned laser pulses that collide in plasma and give rise to a burst of quasi-monochromatic radiation. The energy radiated in the terahertz spectral region can reach an unprecedented several millijoules, which makes it suitable for applications requiring short pulses of high-intensity, narrowband terahertz radiation.

5.
Phys Rev E ; 94(3-1): 033211, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739790

ABSTRACT

The effects of laser-pulse polarization on the generation of an electrostatic shock in an overdense plasma were investigated using particle-in-cell simulations. We found, from one-dimensional simulations, that total and average energies of reflected ions from a circular polarization- (CP) driven shock front are a few times higher than those from a linear polarization- (LP) driven one for a given pulse energy. Moreover, it was discovered that the pulse transmittance is the single dominant factor for determining the CP-shock formation, while the LP shock is affected by the plasma scale length as well as the transmittance. In two-dimensional simulations, it is observed that the transverse instability, such as Weibel-like instability, can be suppressed more efficiently by CP pulses.

6.
Sci Rep ; 6: 32567, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27653458

ABSTRACT

Various methods to generate ultrashort electron bunches for the ultrafast science evolved from the simple configuration of two-plate vacuum diodes to advanced technologies such as nanotips or photocathodes excited by femtosecond lasers. In a diode either in vacuum or of solid-state, the transit-time limit originating from finite electron mobility has caused spatiotemporal bunch-collapse in ultrafast regime. Here, we show for the first time that abrupt exclusion of transit-phase is a more fundamental origin of the bunch-collapse than the transit-time limit. We found that by significantly extending the cathode-anode gap distance, thereby violating the transit-time limit, the conventional transit-time-related upper frequency barrier in diodes can be removed. Furthermore, we reveal how to control the velocity chirp of bunches leading to ballistic bunch-compression. Demonstration of 0.707 THz-, 46.4 femtosecond-bunches from a 50 µm-wide diode in three-dimensional particle-in-cell simulations shows a way toward simple and compact sources of ultrafast electron bunches for diverse ultrafast sciences.

7.
Article in English | MEDLINE | ID: mdl-26565351

ABSTRACT

We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1µm.


Subject(s)
Acceleration , Lasers , Electrons , Hot Temperature , Kinetics , Models, Theoretical
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 2): 026405, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22463335

ABSTRACT

Generation of petawatt-class pulses with a nearly single-cycle duration or with a strongly asymmetric longitudinal profile using a thin plasma layer are investigated via particle-in-cell simulations and the analytical flying mirror model. It is shown that the transmitted pulses having a duration as short as about 4 fs (1.2 laser cycles) or one-cycle front (tail) asymmetric pulses with peak intensity of about 10^{21}W/cm^{2} can be produced by optimizing system parameters. Here, a new effect is found for the shaping of linearly polarized laser pulses, owing to which the peak amplitude of the transmitted pulse becomes larger than that of the incoming pulse, and intense harmonics are generated. Characteristics of the transmitting window are then studied for different parameters of laser pulse and plasma layer. For a circular polarization, it is shown that the flying mirror model developed for shaping laser pulses with ultrathin foils can be successfully applied to plasma layers having a thickness of about the laser wavelength, which allows the shape of the transmitted pulse to be analytically predicted.

9.
Phys Rev Lett ; 99(12): 124801, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17930510

ABSTRACT

For controllable generation of an isolated attosecond relativistic electron bunch [relativistic electron mirror (REM)] with nearly solid-state density, we propose using a solid nanofilm illuminated normally by an ultraintense femtosecond laser pulse having a sharp rising edge. With two-dimensional (2D) particle-in-cell (PIC) simulations, we show that, in spite of Coulomb forces, all of the electrons in the laser spot can be accelerated synchronously, and the REM keeps its surface charge density during evolution. We also developed a self-consistent 1D theory, which takes into account Coulomb forces, radiation of the electrons, and laser amplitude depletion. This theory allows us to predict the REM parameters and shows a good agreement with the 2D PIC simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...