Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36010479

ABSTRACT

The effects of instrumental quality indices on the sensory properties of Shine Muscat grapes harvested 16, 18, 20, and 22 weeks after full bloom (WAFB) were investigated. The berries harvested at 20 and 22 WAFB gained higher sweetness scores than those harvested at 16 and 18 WAFB, showing similar trends to that of total soluble solids (TSS) content. The sourness, astringency, and firmness scores were not significantly different among the samples. The flavor score showed a trend similar to that of sweetness perception. The higher flavor score in the berries harvested at 20 and 22 WAFB seemed to be derived from the development of floral aroma compounds, including linalool and its derivatives, with ripening. Consumer acceptance was highly correlated with sweetness and flavor perceptions. It was concluded that the TSS content and development of floral aroma compounds are the key quality parameters for Shine Muscat grapes, satisfying consumer acceptability in the market.

2.
G3 (Bethesda) ; 10(9): 3365-3377, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32699042

ABSTRACT

The seedlessness of grape derived from stenospermocarpy is one of the most prized traits of table or raisin grapes. It is controlled by a complex genetic system containing one dominant gene and multiple recessive genes. Here, we collected dense variation data from high-depth resequencing data of seeded, seedless, and wild relative grape genomes sequenced to > 37x mean depth. Variant calls were made using a modified variant calling pipeline that was suitable for highly diverse interspecific grape accessions. The modified pipeline enabled us to call several million more variants than the commonly recommended pipeline. The quality was validated by Sanger sequencing data and subsequently supported by the genetic population structure and the phylogenetic tree constructed using the obtained variation data, results of which were generally consistent with known pedigree and taxonomic classifications. Variation data enabled us to confirm a dominant gene and identify recessive loci for seedlessness. Incidentally, we found that grape cultivar Rizamat contains an ancestral chromosomal region of the dominant gene in Sultanina, a predominant seedlessness donor cultivar. Furthermore, we predicted new candidate causal genes including Vitvi01g00455, Vitvi08g01528, and Vitvi18g01237 associated with the recessive seedless-regulating loci, which showed high homology with genes that regulate seed development in Arabidopsis This study provides fundamental insights relevant to variant calling from genome resequencing data of diverse interspecific hybrid germplasms such as grape and will accelerate future efforts aimed at crop improvement.


Subject(s)
Vitis , Genomics , Metagenomics , Phylogeny , Seeds/genetics , Vitis/genetics
3.
Plant Pathol J ; 32(6): 489-499, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27904455

ABSTRACT

Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.

4.
PLoS One ; 9(4): e95634, 2014.
Article in English | MEDLINE | ID: mdl-24743886

ABSTRACT

Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid 'Tamnara' grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase ß subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during parthenocarpic fruit development in grapevines.


Subject(s)
Fruit/drug effects , Fruit/metabolism , Gibberellins/pharmacology , Plant Proteins/metabolism , Vitis/drug effects , Vitis/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics
5.
J Plant Res ; 127(2): 359-71, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24374939

ABSTRACT

The concept that gibberellin (GA) application on seeded grapevines induces seedlessness has been known for decades in viticulture. GA was applied to inflorescence clusters of seeded diploid grapevine cultivar 'Tamnara' (Vitis spp.) at 14 days before full bloom (DBF). Morphological and molecular effects of GA application were examined on the induction of parthenocarpic fruit development. With GA application, ovaries were enlarged and pollen tube growth was completely inhibited. Vitis GA oxidase enzymes, key determinants for GA level, were characterized through phylogenetic analysis with Arabidopsis GA oxidase enzymes. Five VvGA 20-oxidase (VvGA20ox), three VvGA 3-oxidase (VvGA3ox), and nine VvGA 2-oxidase (VvGA2ox) family proteins, and one VvGA methyltransferase (VvGAMT) and one Vitis cytochrome P450 714A1 proteins were identified, and their expression patterns were analyzed during inflorescence development from 14 DBF to 5 days after full bloom (DAF). VvGA2ox1, VvGA20ox3, and VvGA3ox2 were the most abundantly expressed genes in each gene family at 7, 5, and 2 DBF, respectively. Following GA application at 14 DBF inducing seedlessness, GA catabolic genes such as VvGAMT2, VvGA2ox3, and VvGA2ox4 were up-regulated at 12 DBF, full bloom, and 5 DAF, respectively. Conversely, most GA biosynthetic genes, VvGA20oxs and VvGA3oxs, were down-regulated at near full bloom, and the timing of their peak expression was changed. These results suggest that GA application at pre-bloom changes the GA biosynthesis into GA catabolic pathway at near full bloom by altering the transcription level and timing of GA oxidase genes during grapevine inflorescence development.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins/metabolism , Oxidoreductases/genetics , Vitis/enzymology , DNA, Complementary/genetics , Gibberellins/pharmacology , Inflorescence/drug effects , Inflorescence/enzymology , Inflorescence/genetics , Inflorescence/growth & development , Oxidoreductases/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , RNA, Plant/genetics , Seeds/drug effects , Seeds/enzymology , Seeds/genetics , Seeds/growth & development , Vitis/drug effects , Vitis/genetics , Vitis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...