Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 9(11): e1003790, 2013.
Article in English | MEDLINE | ID: mdl-24278025

ABSTRACT

A new generation of strategies is evolving that aim to block malaria transmission by employing genetically modified vectors or mosquito pathogens or symbionts that express anti-parasite molecules. Whilst transgenic technologies have advanced rapidly, there is still a paucity of effector molecules with potent anti-malaria activity whose expression does not cause detrimental effects on mosquito fitness. Our objective was to examine a wide range of antimicrobial peptides (AMPs) for their toxic effects on Plasmodium and anopheline mosquitoes. Specifically targeting early sporogonic stages, we initially screened AMPs for toxicity against a mosquito cell line and P. berghei ookinetes. Promising candidate AMPs were fed to mosquitoes to monitor adverse fitness effects, and their efficacy in blocking rodent malaria infection in Anopheles stephensi was assessed. This was followed by tests to determine their activity against P. falciparum in An. gambiae, initially using laboratory cultures to infect mosquitoes, then culminating in preliminary assays in the field using gametocytes and mosquitoes collected from the same area in Mali, West Africa. From a range of 33 molecules, six AMPs able to block Plasmodium development were identified: Anoplin, Duramycin, Mastoparan X, Melittin, TP10 and Vida3. With the exception of Anoplin and Mastoparan X, these AMPs were also toxic to an An. gambiae cell line at a concentration of 25 µM. However, when tested in mosquito blood feeds, they did not reduce mosquito longevity or egg production at concentrations of 50 µM. Peptides effective against cultured ookinetes were less effective when tested in vivo and differences in efficacy against P. berghei and P. falciparum were seen. From the range of molecules tested, the majority of effective AMPs were derived from bee/wasp venoms.


Subject(s)
Anopheles/parasitology , Antimalarials , Antimicrobial Cationic Peptides , Bee Venoms , Bees/chemistry , Insect Proteins , Malaria, Falciparum/drug therapy , Oocysts , Plasmodium berghei , Plasmodium falciparum , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Bee Venoms/chemistry , Bee Venoms/pharmacology , Cell Line , Female , Humans , Insect Proteins/chemistry , Insect Proteins/pharmacology , Male , Mice
2.
Parasit Vectors ; 6: 108, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23597031

ABSTRACT

It is more than 25 years since the first report that a protozoan parasite could die by a process resulting in a morphological phenotype akin to apoptosis. Since then these phenotypes have been observed in many unicellular parasites, including trypanosomatids and apicomplexans, and experimental evidence concerning the molecular pathways that are involved is growing. These observations support the view that this form of programmed cell death is an ancient one that predates the evolution of multicellularity. Here we review various hypotheses that attempt to explain the origin of apoptosis, and look for support for these hypotheses amongst the parasitic protists as, with the exception of yeast, most of the work on death mechanisms in unicellular organisms has focussed on them. We examine the role that addiction modules may have played in the original eukaryote cell and the part played by mitochondria in the execution of present day cells, looking for examples from Leishmania spp. Trypanosoma spp. and Plasmodium spp. In addition, the expanding knowledge of proteases, nucleases and other molecules acting in protist execution pathways has enabled comparisons to be made with extant Archaea and bacteria and with biochemical pathways that evolved in metazoans. These comparisons lend support to the original sin hypothesis but also suggest that present-day death pathways may have had multifaceted beginnings.


Subject(s)
Apoptosis , Leishmania/physiology , Plasmodium/physiology , Trypanosoma/physiology , Bacteria/genetics , Biological Evolution , Leishmania/genetics , Mitochondria/metabolism , Phenotype , Plasmodium/genetics , Trypanosoma/genetics
3.
Malar J ; 11: 297, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22929459

ABSTRACT

BACKGROUND: Plasmodium berghei ookinetes exhibit an apoptotic phenotype when developing within the mosquito midgut lumen or when cultured in vitro. Markers of apoptosis increase when they are exposed to nitric oxide or reactive oxygen species but high concentrations of hydrogen peroxide cause death without observable signs of apoptosis. Chloroquine and other drugs have been used to induce apoptosis in erythrocytic stages of Plasmodium falciparum and to formulate a putative pathway involving cysteine protease activation and mitochondrial membrane permeabilization; initiated, at least in the case of chloroquine, after its accumulation in the digestive vacuole causes leakage of the vacuole contents. The lack of a digestive vacuole in ookinetes prompted the investigation of the effect of chloroquine and staurosporine on this stage of the life cycle. Finally, the suggestion that apoptosis may have evolved as a strategy employed by ookinetes to increase the fitness of surviving parasites was explored by determining whether increasing the ecological triggers parasite density and nutrient depletion induced apoptosis. METHODS: Ookinetes were grown in culture then either exposed to hydrogen peroxide, chloroquine or staurosporine, or incubated at different densities and in different media. The proportion of ookinetes displaying positive markers for apoptosis in treated samples was compared with controls and results were analyzed using analysis of variance followed by a Turkey's test, or a Kruskal-Wallis test as appropriate. RESULTS: Hydrogen peroxide below 50 µM triggered apoptosis but cell membranes were rapidly compromised by higher concentrations, and the mode of death could not be defined. Both chloroquine and staurosporine cause a significant increase in ookinetes with condensed chromatin, caspase-like activity and, in the case of chloroquine, phosphatidylserine translocation and DNA fragmentation (not investigated for staurosporine). However, mitochondrial membrane potential remained intact. No relationship between ookinete density and apoptosis was detected but nutrient depletion significantly increased the proportion of ookinetes with chromatin condensation in four hours. CONCLUSIONS: It is proposed that both a mitochondrial and an amitochondrial apoptotic pathway may be involved, dependent upon the trigger that induces apoptosis, and that pathways may differ between erythrocytic stages and ookinetes, or between rodent and human malaria parasites.


Subject(s)
Apoptosis , Chloroquine/toxicity , Hydrogen Peroxide/toxicity , Plasmodium falciparum/drug effects , Staurosporine/toxicity , Caspases/metabolism , Chromatin/metabolism , DNA Fragmentation , Membrane Potentials/drug effects , Mitochondria/drug effects , Mitochondrial Membranes/drug effects , Phosphatidylserines/metabolism
4.
PLoS One ; 6(1): e14587, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21283619

ABSTRACT

Diseases transmitted by mosquitoes have a devastating impact on global health and this is worsening due to difficulties with existing control measures and climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. Historically the genetic modification of insects has relied upon transposable elements which have many limitations despite their successful use. To circumvent these limitations the Streptomyces phage phiC31 integrase system has been successfully adapted for site-specific transgene integration in insects. Here, we present the first site-specific transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 targeting site at a defined genomic location. A second phase of genetic modification then achieved site-specific integration of Vida3, a synthetic anti-malarial gene. Expression of Vida3, specifically in the midgut of bloodfed females, offered consistent and significant protection against Plasmodium yoelii nigeriensis, reducing average parasite intensity by 85%. Similar protection was observed against Plasmodium falciparum in some experiments, although protection was inconsistent. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters for their expression, enabling those offering maximum effect with minimum fitness cost to be identified. In the future, this technology will allow effective comparisons and informed choices to be made, potentially leading to complete transmission blockade.


Subject(s)
Anopheles/genetics , Antimalarials/administration & dosage , Gene Targeting/methods , Malaria/prevention & control , Transgenes/genetics , Animals , Animals, Genetically Modified , Female , Humans , Insect Vectors , Malaria/therapy , Plasmodium falciparum/drug effects , Plasmodium yoelii/drug effects
5.
Parasit Vectors ; 3: 104, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-21062457

ABSTRACT

The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms.In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.

6.
PLoS One ; 5(9)2010 Sep 09.
Article in English | MEDLINE | ID: mdl-20844583

ABSTRACT

Several protozoan parasites have been shown to undergo a form of programmed cell death that exhibits morphological features associated with metazoan apoptosis. These include the rodent malaria parasite, Plasmodium berghei. Malaria zygotes develop in the mosquito midgut lumen, forming motile ookinetes. Up to 50% of these exhibit phenotypic markers of apoptosis; as do those grown in culture. We hypothesised that naturally occurring signals induce many ookinetes to undergo apoptosis before midgut traversal. To determine whether nitric oxide and reactive oxygen species act as such triggers, ookinetes were cultured with donors of these molecules. Exposure to the nitric oxide donor SNP induced a significant increase in ookinetes with condensed nuclear chromatin, activated caspase-like molecules and translocation of phosphatidylserine that was dose and time related. Results from an assay that detects the potential-dependent accumulation of aggregates of JC-1 in mitochondria suggested that nitric oxide does not operate via loss of mitochondrial membrane potential. L-DOPA (reactive oxygen species donor) also caused apoptosis in a dose and time dependent manner. Removal of white blood cells significantly decreased ookinetes exhibiting a marker of apoptosis in vitro. Inhibition of the activity of nitric oxide synthase in the mosquito midgut epithelium using L-NAME significantly decreased the proportion of apoptotic ookinetes and increased the number of oocysts that developed. Introduction of a nitric oxide donor into the blood meal had no effect on mosquito longevity but did reduce prevalence and intensity of infection. Thus, nitric oxide and reactive oxygen species are triggers of apoptosis in Plasmodium ookinetes. They occur naturally in the mosquito midgut lumen, sourced from infected blood and mosquito tissue. Up regulation of mosquito nitric oxide synthase activity has potential as a transmission blocking strategy.


Subject(s)
Anopheles/metabolism , Apoptosis , Insect Vectors/metabolism , Malaria/metabolism , Nitric Oxide/metabolism , Plasmodium berghei/cytology , Plasmodium berghei/growth & development , Reactive Oxygen Species/metabolism , Animals , Anopheles/parasitology , Digestive System/metabolism , Digestive System/parasitology , Humans , Insect Vectors/parasitology , Malaria/parasitology , Mice , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Polymorphism, Single Nucleotide
7.
Malar J ; 9: 243, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-20796288

ABSTRACT

BACKGROUND: Whether Plasmodium falciparum, the agent of human malaria responsible for over a million deaths per year, causes fitness costs in its mosquito vectors is a burning question that has not yet been adequately resolved. Understanding the evolutionary forces responsible for the maintenance of susceptibility and refractory alleles in natural mosquito populations is critical for understanding malaria transmission dynamics. METHODS: In natural mosquito populations, Plasmodium fitness costs may only be expressed in combination with other environmental stress factors hence this hypothesis was tested experimentally. Wild-caught blood-fed Anopheles gambiae s.s. females of the M and S molecular form from an area endemic for malaria in Mali, West Africa, were brought to the laboratory and submitted to a 7-day period of mild hydric stress or kept with water ad-libitum. At the end of this experiment all females were submitted to intense desiccation until death. The survival of all females throughout both stress episodes, as well as their body size and infection status was recorded. The importance of stress, body size and molecular form on infection prevalence and female survival was investigated using Logistic Regression and Proportional-Hazard analysis. RESULTS: Females subjected to mild stress exhibited patterns of survival and prevalence of infection compatible with increased parasite-induced mortality compared to non-stressed females. Fitness costs seemed to be linked to ookinetes and early oocyst development but not the presence of sporozoites. In addition, when females were subjected to intense desiccation stress, those carrying oocysts exhibited drastically reduced survival but those carrying sporozoites were unaffected. No significant differences in prevalence of infection and infection-induced mortality were found between the M and S molecular forms of Anopheles gambiae. CONCLUSIONS: Because these results suggest that infected mosquitoes may incur fitness costs under natural-like conditions, they are particularly relevant to vector control strategies aiming at boosting naturally occurring refractoriness or spreading natural or foreign genes for refractoriness using genetic drive systems in vector populations.


Subject(s)
Anopheles/physiology , Anopheles/parasitology , Disease Vectors , Plasmodium falciparum/pathogenicity , Animals , Body Size , Female , Mali , Plasmodium falciparum/growth & development , Survival Analysis
8.
Trends Parasitol ; 26(12): 582-90, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20800543

ABSTRACT

In the wake of the development of insecticide resistance in mosquitoes, novel strategies for halting malaria transmission are being developed. These include the genetic modification (GM) of mosquitoes to become incompetent vectors. Although mosquito GM technologies are progressing rapidly, the rationale behind choosing anti-parasite molecules to be expressed by mosquitoes has received less attention. Here, questions are explored that that should be addressed during the strategic selection of these anti-Plasmodium molecules, focusing on antimicrobial peptides. Properties that will enhance the likelihood of success are discussed, and the need to plan an initial strategy to eliminate molecules that cause fitness costs to the mosquito is considered. Effector molecules with proven anti-sporogonic stage activity are reviewed, and the activity of a selection of these molecules is detailed.


Subject(s)
Animals, Genetically Modified/parasitology , Antiparasitic Agents , Culicidae/genetics , Culicidae/parasitology , Peptides/genetics , Plasmodium/physiology , Animals , Membranes/physiology , Parasitology/methods , Parasitology/standards , Peptides/metabolism
9.
Parasit Vectors ; 2(1): 32, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19604379

ABSTRACT

BACKGROUND: A wide range of unicellular eukaryotes have now been shown to undergo a form of programmed cell death (PCD) that resembles apoptosis; exhibiting morphological and, in some cases, biochemical markers typical of metazoans. However, reports that sexual and asexual stages of malaria parasites exhibit these markers have been challenged. Here we use a rodent malaria model, Plasmodium berghei, to determine whether, and what proportion of cultured ookinetes show signs of apoptosis-like death and extend the study to examine ookinetes of Plasmodium falciparum in vivo. RESULTS: Ookinetes displayed the following markers of PCD: loss of mitochondrial membrane potential, nuclear chromatin condensation, DNA fragmentation, translocation of phosphatidylserine to the outer surface of the cell membrane and caspase-like activity. The proportion of parasites expressing apoptosis markers rose with time, particularly when cultured in phosphate buffered saline. Some ookinetes positive for apoptosis markers also had compromised membranes, which could represent a late stage in the process. When these are included a similar proportion of ookinetes display each marker. Over 50% of P. falciparum ookinetes, removed from the mosquito midgut lumen 24 h post-infection, had nuclei containing fragmented DNA. CONCLUSION: We have confirmed previous reports that Plasmodium ookinetes display multiple signs that suggest they die by a mechanism resembling apoptosis. This occurs in vivo and in vitro without experimental application of triggers. Our findings support the hypothesis that non-necrotic mechanisms of cell death evolved before the advent of multicellular organisms.

10.
BMC Evol Biol ; 9: 76, 2009 Apr 20.
Article in English | MEDLINE | ID: mdl-19379508

ABSTRACT

BACKGROUND: Trade-offs between anti-parasite defence mechanisms and other life history traits limit the evolution of host resistance to parasites and have important implications for understanding diseases such as malaria. Mosquitoes have not evolved complete resistance to malaria parasites and one hypothesis is that anti-malaria defence mechanisms are costly. RESULTS: We used matrix population models to compare the population growth rates among lines of Anopheles gambiae that had been selected for resistance or high susceptibility to the rodent malaria parasite, Plasmodium yoelii nigeriensis. The population growth rate of the resistant line was significantly lower than that of the highly susceptible and the unselected control lines, regardless of whether mosquitoes were infected with Plasmodium or not. The lower population growth of malaria-resistant mosquitoes was caused by reduced post blood-feeding survival of females and poor egg hatching. CONCLUSION: With respect to eradicating malaria, the strategy of releasing Plasmodium-resistant Anopheles mosquitoes is unlikely to be successful if the costs of Plasmodium-resistance in the field are as great as the ones measured in this study. High densities of malaria-resistant mosquitoes would have to be maintained by continuous release from captive breeding facilities.


Subject(s)
Anopheles/parasitology , Insect Vectors/parasitology , Models, Biological , Plasmodium yoelii/pathogenicity , Animals , Anopheles/genetics , Anopheles/physiology , Disease Susceptibility , Environment , Genotype , Insect Vectors/genetics , Insect Vectors/physiology , Life Cycle Stages , Malaria/transmission , Population Density , Population Growth
11.
Adv Parasitol ; 68: 85-110, 2009.
Article in English | MEDLINE | ID: mdl-19289191

ABSTRACT

Many hosts are able to tolerate infection by altering life-history traits that are traded-off one against another. Here the reproductive fitness of insect hosts and vectors is reviewed in the context of theories concerning evolutionary mechanisms driving such alterations. These include the concepts that changes in host reproductive fitness are by-products of infection, parasite manipulations, host adaptations, mafia-like strategies or host compensatory responses. Two models are examined in depth, a tapeworm/beetle association, Hymenolepis diminuta/Tenebrio molitor and malaria infections in anopheline mosquitoes. Parasite-induced impairment of vitellogenesis ultimately leads to a decrease in female reproductive success in both cases, though by different means. Evidence is put forwards for both a manipulator molecule of parasite origin and for host-initiated regulation. These models are backed by other examples in which mechanisms underlying fecundity reduction or fecundity compensation are explored. It is concluded that evolutionary theories must be supported by empirical evidence gained from studying molecular, biochemical and physiological mechanisms underlying changes in host life-history traits, ideally using organisms that have evolved together and that are in their natural environment.


Subject(s)
Biological Evolution , Insecta/genetics , Insecta/parasitology , Animals , Host-Parasite Interactions/physiology , Insecta/growth & development , Life Cycle Stages
12.
Malar J ; 7: 214, 2008 Oct 21.
Article in English | MEDLINE | ID: mdl-18939985

ABSTRACT

BACKGROUND: Intra-specific variation in sperm length influences male reproductive success in several species of insects. In males of the malaria vector Anopheles gambiae, sperm length is highly variable but the significance of this variation is unknown. Understanding what determines the reproductive success of male mosquitoes is critical for controlling malaria, and in particular for replacing natural populations with transgenic, malaria-resistant mosquitoes. METHODS: A laboratory population of A. gambiae males was tested for intra-specific variation in sperm length. A full-sib quantitative genetic design was used to test for a genetic component of sperm length in A. gambiae males and estimate its heritability. This study also tested for a relationship between sperm length and male reproductive success in A. gambiae. Male reproductive success was measured as the proportions of inseminated and ovipositing females. RESULTS: There was intra-specific variation of sperm length in A. gambiae. There was no significant genetic variation in sperm length and its heritability was low (h2 = 0.18) compared to other insects. Sperm length was correlated with male body size (measured as wing length). Males with short sperm had significantly higher reproductive success than males with long sperm and this was independent of body size. CONCLUSION: This is the first study to demonstrate intra-specific variation in sperm length in A. gambiae and that males with short sperm have higher reproductive success. That sperm length influences female oviposition is important for any strategy considering the release of transgenic males.


Subject(s)
Anopheles/physiology , Insect Vectors/physiology , Spermatozoa/cytology , Animals , Cell Size , Male , Reproduction
13.
Parasit Vectors ; 1(1): 33, 2008 Sep 22.
Article in English | MEDLINE | ID: mdl-18808667

ABSTRACT

BACKGROUND: Oocysts of the malaria parasite form and develop in close proximity to the mosquito midgut basal lamina and it has been proposed that components of this structure play a crucial role in the development and maturation of oocysts that produce infective sporozoites. It is further suggested that oocysts incorporate basal lamina proteins into their capsule and that this provides them with a means to evade recognition by the mosquito's immune system. The site of production of basal lamina proteins in insects is controversial and it is still unclear whether haemocytes or midgut epithelial cells are the main source of components of the mosquito midgut basal lamina. Of the multiple molecules that compose the basal lamina, laminin is known to interact with a number of Plasmodium proteins. In this study, the localisation of mosquito laminin within the capsule and cytoplasm of Plasmodium berghei oocysts and in the midgut epithelial cells of Anopheles stephensi was investigated. RESULTS: An ultrastructural examination of midgut sections from infected and uninfected An. stephensi was performed. Post-embedded immunogold labelling demonstrated the presence of laminin within the mosquito basal lamina. Laminin was also detected on the outer surface of the oocyst capsule, incorporated within the capsule and associated with sporozoites forming within the oocysts. Laminin was also found within cells of the midgut epithelium, providing support for the hypothesis that these cells contribute towards the formation of the midgut basal lamina. CONCLUSION: We suggest that ookinetes may become coated in laminin as they pass through the midgut epithelium. Thereafter, laminin secreted by midgut epithelial cells and/or haemocytes, binds to the outer surface of the oocyst capsule and that some passes through and is incorporated into the developing oocysts. The localisation of laminin on sporozoites was unexpected and the importance of this observation is less clear.

14.
Trends Parasitol ; 24(10): 435-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18707919

ABSTRACT

Parasite-induced alterations of the host phenotype have been reported in many systems. These changes are traditionally categorized into three kinds of phenomena: secondary outcomes of infection with no adaptive value, host adaptations that reduce the detrimental consequences of infection and parasitic adaptations that facilitate transmission. However, this categorization is a simple view, and host modifications should be considered as co-evolved traits, rather than a total takeover. Here, we present a novel scenario of manipulation, which has considerable potential to resolve issues that are specific to the evolution of behavioural alterations induced by parasites. It is proposed that certain parasites affect fitness-related traits in their hosts to trigger host compensatory responses because these responses can meet the transmission objectives of parasites.


Subject(s)
Adaptation, Physiological , Biological Evolution , Host-Parasite Interactions/physiology , Parasitic Diseases/parasitology , Animals , Behavior Control , Phenotype
15.
Malar J ; 7: 103, 2008 Jun 05.
Article in English | MEDLINE | ID: mdl-18534029

ABSTRACT

BACKGROUND: In female mosquitoes that transmit malaria, the benefits of being refractory to the Plasmodium parasite are balanced by the immunity costs in the absence of infection. Male mosquitoes, however, gain no advantage from being refractory to blood-transmitted parasites, so that any costs associated with an enhanced immune system in the males limit the evolution of female refractoriness and has practical implications for the release of transgenic males. METHODS: Aspects of the male cost of carrying Plasmodium-refractory genes were estimated by comparing the males' immune response and reproductive success among strains of Anopheles gambiae that had been selected for refractoriness or extreme susceptibility to the rodent malaria parasite, Plasmodium yoelii nigeriensis. The refractory males had a stronger melanization response than males from the susceptible line. Four traits were used as correlates of a male's reproductive success: the proportion of females that were inseminated by a fixed number of males in a cage within a fixed time frame, the proportion of females with motile sperm in their spermathecae, the proportion of ovipositing females, and the mean number of eggs per batch. RESULTS: Although there were significant differences among groups of males in sperm motility and oviposition success, these differences in male reproductive success were not associated with the refractory or susceptible male genotypes. Contrary to expectation, females mated to early emerging refractory males laid significantly more eggs per batch than females mated to later emerging susceptible males. Sperm motility and oviposition success were strongly correlated suggesting that variation in sperm motility influences female oviposition and ultimately male reproductive success. CONCLUSION: An increased melanization response in male A. gambiae does not diminish male reproductive success under the experimental protocol used in this study. That refractory males induced ovipositing females to lay more eggs than susceptible males is an interesting result for any strategy considering the release of transgenic males. That sperm motility influences female oviposition is also important for the release of transgenic males.


Subject(s)
Anopheles/physiology , Anopheles/parasitology , Immunity, Innate/genetics , Plasmodium yoelii/immunology , Animals , Anopheles/immunology , Female , Male , Oviposition , Reproduction , Sex Characteristics , Sperm Motility
16.
Malar J ; 7: 82, 2008 May 19.
Article in English | MEDLINE | ID: mdl-18489758

ABSTRACT

BACKGROUND: Two Plasmodium berghei ookinete micronemal proteins, circumsporozoite and TRAP related protein (CTRP) and secreted ookinete adhesive protein (SOAP) both interact with the basal lamina component laminin. Following gene disruption studies it has been proposed that, apart from their role in motility, these proteins may be required for interactions leading to ookinete-to-oocyst transformation. METHODS: CTRP and SOAP null mutant P. berghei ookinetes were compared to P. berghei ANKA wild-type for their ability to transform and grow in vitro. To confirm in vitro findings for P. berghei CTRP-KO ookinetes were injected into the haemocoel of Anopheles gambiae female mosquitoes. RESULTS: Transformation, growth, and viability were comparable for the gene disrupted and wild-type parasites. P. berghei CTRP-KO ookinetes were able to transform into oocysts in the haemocoel of An. gambiae mosquitoes. CONCLUSION: Neither CTRP nor SOAP is required for parasite transformation in vitro. By-passing the midgut lumen allows for the transformation of P. berghei CTRP-KO ookinetes suggesting that it is not required for transformation in vivo.


Subject(s)
Oocysts/growth & development , Plasmodium berghei/growth & development , Protozoan Proteins/physiology , Receptors, Cell Surface/physiology , Animals , Anopheles/parasitology , Cell Survival , Gene Deletion , Hemolymph/parasitology , Male , Mice , Mutagenesis, Insertional , Plasmodium berghei/genetics , Protozoan Proteins/genetics , Receptors, Cell Surface/genetics
17.
Trends Parasitol ; 24(5): 219-27, 2008 May.
Article in English | MEDLINE | ID: mdl-18424235

ABSTRACT

More than a century after the discovery of the complex life cycle of its causative agent, malaria remains a major health problem. Understanding mosquito-malaria interactions could lead to breakthroughs in malaria control. Novel strategies, such as the design of transgenic mosquitoes refractory to Plasmodium, or design of human vaccines emulating mosquito resistance to the parasite, require extensive knowledge of processes involved in immune responses and of microevolutionary mechanisms that create and maintain variation in immune responses in wild vector populations. The recent realization of how intimately and specifically mosquitoes and Plasmodium co-evolve in Nature is driving vector molecular biologists and evolutionary ecologists to move closer to the natural setting under the common umbrella of 'Ecological immunology'.


Subject(s)
Anopheles/immunology , Anopheles/parasitology , Ecosystem , Insect Vectors/immunology , Insect Vectors/parasitology , Malaria/immunology , Plasmodium/immunology , Animals , Anopheles/genetics , Host-Pathogen Interactions/immunology , Humans , Insect Vectors/genetics , Malaria/genetics , Plasmodium/genetics
18.
Int J Parasitol ; 37(11): 1221-32, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17482621

ABSTRACT

During their passage through a mosquito vector, malaria parasites undergo several developmental transformations including that from a motile zygote, the ookinete, to a sessile oocyst that develops beneath the basal lamina of the midgut epithelium. This transformation process is poorly understood and the oocyst is the least studied of all the stages in the malaria life cycle. We have used an in vitro culture system to monitor morphological features associated with transformation of Plasmodium berghei ookinetes and the role of basal lamina components in this process. We also describe the minimal requirements for transformation and early oocyst development. A defined sequence of events begins with the break-up of the inner surface membrane, specifically along the convex side of the ookinete, where a protrusion occurs. A distinct form, the transforming ookinete or took, has been identified in vitro and also observed in vivo. Contrary to previous suggestions, we have shown that no basal lamina components are required to trigger ookinete to oocyst transformation in vitro. We have demonstrated that transformation does not occur spontaneously; it is initiated in the presence of bicarbonate added to PBS, but it is not mediated by changes in pH alone. Transformation is a two-step process that is not completed unless a range of nutrients are also present. A minimal medium is defined which supports transformation and oocyst growth from 7.8 to 11.4microm by day 5 with 84% viability. We conclude that ookinete transformation is mediated by bicarbonate and occurs in a similar manner to the differentiation of sporozoite to the hepatic stage.


Subject(s)
Oocysts/physiology , Plasmodium berghei/physiology , Animals , Anopheles/parasitology , Basement Membrane/ultrastructure , Disease Vectors , Drosophila melanogaster/parasitology , Genetic Markers , Hydrogen-Ion Concentration , Life Cycle Stages , Microscopy, Electron, Transmission , Oocysts/ultrastructure , Parasitology/methods , Plasmodium berghei/ultrastructure , Protozoan Proteins/genetics
19.
Trends Parasitol ; 23(4): 135-8, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17276733

ABSTRACT

The genetic basis of mosquito resistance to malaria parasites is well established and currently receives a lot of attention. However this is not the sole determinant of the success or failure of an infection. In a recent article, Lambrechts and colleagues report the influence of the quality of the external environment of a mosquito on infection. They indicate that external variations could substantially reduce the importance of resistance genes in determining infection by malaria parasites. Furthermore, these variations could influence future plans to use malaria-resistant transgenic mosquitoes to control parasite transmission.


Subject(s)
Anopheles/parasitology , Insect Vectors/parasitology , Malaria/transmission , Animals , Anopheles/genetics , Environment , Genetic Variation , Genotype , Immunity, Innate/genetics , Immunity, Innate/physiology , Insect Vectors/genetics , Plasmodium falciparum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...